

    
      
          
            
  



Welcome to FEBID Simulation documentation!

The package is virtual representation of the direct-write nanofabrication technique called
FEBID [https://www.beilstein-journals.org/bjnano/articles/3/70] driven by an electron beam that typically takes place
in a SEM [https://en.wikipedia.org/wiki/Scanning_electron_microscope]. The simulation takes in a handful of
parameters and allows prediction of the deposit shape expected from an experiment. It features a live visual process
representation, periodical save of the current state of the 3D deposited structure and
recording of the process parameters like time and growth rate. Additionally, the package features an electron beam - matter
simulator, that can be run separately using a previously saved 3D structure to reveal beam related details of the process.

The saved 3D structure files can then be interactively viewed or compiled into a animated series depicting the process.

The Getting started section will let you quickly install the package and run an example simulation.
A more detailed interface manual, input parameter files explanation and features list will give a full understanding
on how to use the simulation.

For more in-deep understanding of the simulation design and code details check the API section.
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Getting started


Introduction

Simulation of the FEBID process written in Python.
FEBID stands for Focused Electron Beam Induced Deposition, a variation of a CVD (chemical vapor deposition) process.
It uses volatile organometallic molecules (precursor) as material and a controlled electron beam
to selectively deposit material on a substrate.

Simulation base features:


	Continuum model


	Enabled diffusion


	Enabled temperature effects


	Electron-matter interaction via Monte Carlo simulation


	No gas dynamics implications






Installation

The simulation requires Python 3.7 or later.

Package is available via PyPi: pip install febid

Alternatively, it can be installed directly from GitHub via pip, although that will require compilation of some modules:

pip install git+https://github.com/MrCheatak/FEBID_py


Tip

Linux user may need to manually install Tkinter, as it is not always shipped with the default installation of Python.





Running the first simulation

In order to run the first simulation, Parameters.yml and Me3PtCpMe.yml parameter files in the
Examples [https://github.com/MrCheatak/FEBID_py/tree/master/Examples] folder are needed.
As the installation finishes, run python -m febid, which will show the main control panel:

There are three main setup steps that are essential for the simulation: space, pattern and parameters of the
beam and deposition material. Further instructions will configure a simulation on a 200x200 nm substrate
with a stationary 5s exposure of a 30keV 0.15nA beam deposition using the Me3PtCpMe precursor.


	Space:
	Firstly, a simulation volume domain has to be created. The simplest case is a clean substrate.
Choose Parameters option and specify 200x200x200 nm
dimensions with 5 nm cell size and 10 nm substrate. This will define a cubic simulation domain divided into voxels
with 5 nm edge length. Finally, a 20 nm layer of substrate material (Au) is laid at the bottom.



	Pattern:
	Next, pattern has to be defined for the controlled beam. Choose Simple patterns and select Point from the drop-down
menu. This option will fix the beam at a point specified by X and Y parameters, set both of them to 100 to position
the beam at the center of the substrate. The time that the beam will spend at that point is defined by dwell time
and repeats parameters. Lets set a 5 s exposure by setting them to 1000 and 5000 correspondingly.
A beam is configured now to stay at the (100,100) point for 5 s.



	Beam and precursor:
	Finally, open Parameters.yml for Settings and Me3PtCpMe.yml for Precursor parameters. The first one
specifies the beam parameters and precursor flux, the second provides precursor material properties.





Lastly, uncheck all the saving options and enable Show the process to watch the growth in real
time and hit Start.

A new window is then shown with a scene containing the substrate. The scene can be rotated and zoomed to get a better
view angle.


Important

Besides the graphical representation, a console is will display simulation info. It is important to keep an eye on it as
the deposition progress, execution speed and warnings and errors, if any occur, are output to the console.







            

          

      

      

    

  

    
      
          
            
  
Manual


Contents:



	Interface
	Control panel:

	Saving simulation results:

	Viewing simulation results:





	Experimental settings
	Beam:

	Other:





	Precursor parameters file
	Precursor parameters list:

	Deposit parameters list:





	Setting up a series of simulations









            

          

      

      

    

  

    
      
          
            
  
Interface


Control panel:

Here is the list of all settings available on the control panel.

Load last session – initially unchecked. Checking it will create a session file at the location, from where the
Python command was executed. Lunching from the same location again will load settings used previously.
This file can be as well be manually edited to change the settings preset,
i.e for a series of simulation runs.

Simulation volume:


	VTK file – allows specifying a VTK-type file (.vtk) that contains a predefined 3D structure to be used in the simulation.


	Parameters – create a fresh simulation volume with specified dimensions and voxel(cell) size with a substrate at the bottom.


	Auto – to be used only when using a stream-file. The dimensions of the simulation volume will be defined automatically to encapsulate the printing path with a sufficient margin.


	Width, length, height – simulation volume dimensions, nm.


	Cell size – edge length of a cubic cell or voxel that is the simulation volume is divided into. The smallest volume fraction of the simulation volume


	Substrate height – the thickness of a substrate layer at the bottom of the simulation volume. By default, it has properties of gold. It should be a multiple of Cell size.


Volume dimensions have to be set only if Parameters is chosen. When VTK file is chosen, they are set automatically from the file, as well as Substrate height and Cell size.
For the Auto option, only Cell size and Substrate height have to be specified.








Pattern:


	Simple pattern – allows generation of a path with one of the available simple shapes:
Available shapes: point, line, square, rectangle and circle.


	x, y – parameters of the selected shape. Position for a point, length for a line, edge length for a square and rectangle, radius for a circle. Except for the point, all shapes are placed in the center. Keep in mind, that the printing path should be inside the borders of the simulation volume.


	Pitch – the shape contour is divided into discrete points, which a beam visits in a sequence. This parameter defines the distance between two consequent positions of the beam along it’s path.


	Dwell time – the amount of time the beam sits or dwells at a single position.


	Repeats – the number of times the pattern defined by shape, dwell time and pitch has to be repeated.


	Stream file – allows specifying a special stream-file, that defines a more complex printing path. It represents a sequence of beam positions with dwell times. This option requires Auto to be chosen in the Simulation volume section.


	HFW – Half Field Width sets the scale of the structure. Because pattern files are resolved in pixels, they have to be related to the actual distance units. This relation is provided by the magnification or HFW.




Beam and precursor:


	Settings – a YAML (.yml) file with beam parameters and precursor flux to be specified here.


	Precursor parameters – a YAML (.yml) file with precursor(printing material) and deponat(printed material) properties.


	Temperature tracking – check to enable calculation of the temperature profile and temperature dependency of the precursor coverage.





Warning

Corresponding precursor parameters have to be included in the parameter file in order for the temperature tracking to work.




Note

If a loaded 3D structure does not have temperature profile data, it will be added automatically.



Save file:


	Save simulation data – check to regularly save statistical data of the simulation including time passed, deposition time passed and volume filled. The save interval is specified in the next field.


	Save structure snapshots – check to regularly save the state of the deposition process. The save interval is specified in the next field.





	VTK file option:
	Read the volume with a structure from a .vtk file. The file can be a regular .vtk file with a structure in it
or it can be a file produced by the simulation (by checking Save structure snapshots). If an arbitrary .vtk file is
specified, it has to be a UniformGrid, have a cubic cell (equal spacings) and have a single cell array.



	Graphical:
	When ‘Show the process’ is checked to view the simulation process in real-time, a window with a 3D scene will open.
Refresh rate is set to 0.5 s, thus it may be slow to interact with.
The scene is interactive, meaning it can be zoomed by scrolling, rotated  with a mouse, moved around (with Shift
pressed) and focused at the cursor by pressing ‘F’.
The coloring and the corresponding scale represents the concentration of the precursor at the surface.
Thus, the 3D object displayed is not the solid structure itself, but it’s whole surface, that follows the shape of
the solid 3D object.







Saving simulation results:

When any of the ‚Save…‘ options are checked a new folder for the current simulation is created.
The intervals of statistics records and snapshots saving refer to the deposition time.

Save simulation data creates an .xlsx Excel file and records simulation setup information and statistical data.
Simulation setup is recorded before the simulation start and includes Precursor/deposit properties,
Beam/precursor flux settings and Simulation volume attributes, which are saved on separate sheets.
Statistical data is then recorded repeatedly during the simulation and includes the following default columns:


	Precise time of record (real)


	Time passed (real), s


	Time passed (deposition/experiment), s


	Current lowest precursor coverage 1/nm 2


	Temperature, K


	Deposited volume, nm 3


	Growth rate





Note

The data collected can be extended via Statistics class by adding columns at the simulation initialization and then
providing data for timely records in the monitoring function.




Hint

While real time refers to the real-world time, simulation/experiment refers to the time defined by the beam pattern.



Save structure snapshots enables regular dumping of the current state of structure. The data is saved in .vtk format,
and includes 3D arrays that define:


	Grown structure


	Surface deposit


	Surface precursor coverage


	Temperature


	Surface cells


	Semi-surface cells


	Ghost cells





Additionally, current time, time passed, deposition time passed and beam position are saved.




The files saved via this option can be then viewed as 3D models by the included show_file.py and show_animation.py
scripts or in ParaView®.


Warning

3D structure file (.vtk) may reach 500 Mb for finer grids and, coupled with regular saving with short intervals,
may occupy significant disc space. If only the end-result is needed, input an interval that is larger than the
total deposition time.




Important

Currently, patterning information is not included in the saved simulation setup info and has to be managed manually.





Viewing simulation results:

There are three options to inspect a 3D structure deposited by FEBID simulation.

The first one is viewing a specific
snapshot with all the corresponding data layers (precursor coverage, temperature etc.).


python -m febid show_file




The second option is to view the process based on a series of structure snapshots. Unlike viewing a single file, only
one data layer can be ‘animated’.


python -m febid show_animation




Surface deposit, precursor coverage and temperature profile data are currently supported, it can be set up inside
the script.

The third option is to use Paraview® [https://www.paraview.org/download/].
Examples [https://github.com/MrCheatak/FEBID_py/tree/master/Examples] folder contains a process file, that has
all presets for each dataset included in the 3D structure file to render the same result as the show_file script.





            

          

      

      

    

  

    
      
          
            
  
Experimental settings

An example of a settings file can be found in the
Examples [https://github.com/MrCheatak/FEBID_py/tree/master/Examples] folder of the repository.


Beam:

Experiment beam settings:


	beam_energy – energy of the electron beam, keV


	beam_current – current of the electron beam,  A




Modulation of the beam profile:


	gauss_dev – standard deviation of a Gaussian beam shape function in nm


	n – order of the Gaussian function (see super or higher order gaussian distribution)




Electron trajectory settings:


	minimum_energy – energy at which electron trajectory following concludes, keV






Other:


	precursor_flux – precursor flux at the surface,  1/(nm^2*s)


	substrate_element – material of the substrate, i.e. ‘Au’


	deposition_scaling – multiplier for deposited volume for artificial speed up of the simulation


	emission_fraction – fraction of the total energy lost by primary electrons that is converted to secondary electron emission








            

          

      

      

    

  

    
      
          
            
  
Precursor parameters file

An example of a precursor parameters file can be found in the
Examples [https://github.com/MrCheatak/FEBID_py/tree/master/Examples] folder of the repository.


Precursor parameters list:

Base parameters:


	name – a common name of the selected precursor


	formula - a chemical formula of the precursor ,i,e ‘Me3PtCpMe’


	molar_mass_precursor – molecular mass of the precursor molecule, g/mol


	max_density - maximum site density of the precursor, 1/nm^2


	dissociated_volume – deposited material volume resulting from dissociation of s single molecule, nm^3


	sticking_coefficient – a probability that a precursor molecule adheres to the surface upon collision


	P_vap: precursor vapor pressure in the chamber, Pa




Dissociation:


	cross_section – precursor molecule integral dissociation cross-section, nm^2




Diffusion:


	diffusion_coefficient – surface diffusion coefficient , nm^2/s


	diffusion_activation_energy* – activation energy of the diffusion in its Arrhenius equation, eV


	diffusion_prefactor* – prefactor in diffusion Arrhenius equation, nm^2/s




Desorption:


	residence_time – a mean time a precursor molecule stays on the surface, µs


	adsorption_activation_energy* – activation energy of the adsorption in the residence time Arrhenius equation, eV


	desorption_attempt_frequency* – a frequency, at which a molecule attempts to desorb from the surface, Hz






Deposit parameters list:


	deposit – chemical formula reflecting resulting deposit composition


	molar_mass_deposit – molecular mass of the given formula, g/mol


	SE_emission_activation_energy – energy required to emit a secondary electron, eV


	SE_mean_free_path – secondary electron mean free path nm


	average_element_number – average or effective atomic number of the given formula


	average_element_mol_mass – average molecular mass of the given formula g/mol


	average_density – deposit mass density, g/cm^3


	thermal_conductivity – thermal conductivity of the bulk deposit, W/nm/K




* – parameters required for temperature tracking





            

          

      

      

    

  

    
      
          
            
  
Setting up a series of simulations

Optimisation of pattern files, simulation input parameters or simulation of several structures may require
running a significant number of simulations. The package offers some simple automation features for such tasks.
Setting up a simulation series requires composing a Python script.

The first feature allows executing a sequence of simulations arising from consequently changing a single parameter.
A series of such simulations is regarded as a scan. Such scan can be carried out on any parameter from
the Precursor or Settings file.

# Initially, a session configuration file has to be specified.
# This file, along settings and precursor parameters files specified in it, is to be modified
# and then used to run a simulation. This routine is repeated until the desired parameter
# has taken a given number of values.
# The routine only changes a single parameter. All other parameters have to be preset forehand.
session_file = '/home/kuprava/simulations/last_session.yml'

# The first parameter change or scan modifies the Gaussian deviation parameter of the beam.
# The file that will be modified in this case is the settings file.
# Set up a folder (it will be created automatically) for simulation save files
directory = '/home/kuprava/simulations/gauss_dev_scan/'
write_param(session_file, 'save_directory', directory)
# Specify parameter name
param = 'gauss_dev'
# Specify values that the parameter will take during consequent simulations
vals = [2, 3, 4, 5, 6, 7, 8]
# Launch the scan
scan_settings(session_file, param, vals, 'hs')
# Files that are saved during the simulation are named after the specified common name (here i.e. 'hs')
# and the parameter name.``





It is also possible to run a 2D scan, meaning another parameter is scanned for each value of the first parameter.

The second option is to run simulations by using a collection of pattern files. This mode requires that all the
desired pattern files are collected in a single folder, that has to be provided to the script.

# Again, specify a desired location for simulation save files
directory = '/home/kuprava/simulations/longs/'
# Optionally, an initial structure can be specified. This will 'continue' deposition
# onto a structure obtained in one of the earlier simulations.
# It can be used i.e. when all planned structures share a same initial feature such as a pillar.
# Keep in mind that it can be used only for patterning files with the same patterning area.
# To that, the patterning area must correspond to one that is defined by the simulation for the current
# pattern including margins.
initial_structure = '/home/kuprava/simulations/hockey_stick_therm_050_5_01_15:12:31.vtk'
write_param(session_file, 'structure_source', 'vtk')
write_param(session_file, 'vtk_filename', initial_structure)
write_param(session_file, 'save_directory', directory)
# Specifying a folder with patterning files
stream_files = '/home/kuprava/simulations/steam_files_long_s'
# Launching the series
scan_stream_files(session_file, stream_files)






Note

Scanning only modifies the selected parameter(s). Thus, all other parameters as well as saving options and output
directory have to be preset.






            

          

      

      

    

  

    
      
          
            
  
How it works

This section will explain how various modules work, what solutions are applied and how some of
the input parameters are estimated


Contents:



	Monte Carlo module
	1. Primary electron scattering

	2. Electron trajectory discretisation

	3. Surface electron flux estimation

	4. Beam heating power estimation





	Diffusion
	Ghost cells

	Numerical solution





	Thermal effects
	Temperature dependence

	Heat equation













            

          

      

      

    

  

    
      
          
            
  
Monte Carlo module

The Monte Carlo module realises electron beam – matter interaction.
There are two results, that are eventually transferred to the deposition module.
The first one is secondary electron flux profile, the second is distribution of the volumetric heat sources
in the solid or beam heating power.

There are a total of 5 stages that the simulation consists of:


	Primary electron scattering


	Secondary electron emission


	Surface electron flux estimation


	Primary electron energy deposition


	Secondary electron energy deposition





1. Primary electron scattering


[image: _images/gauss_distr.png]

A total of 20000 generated electrons
on a 50x50 grid with 3.8 standard
deviation. Histograms reflect equatorial
distributions.



At this step, scattering of the primary electrons is simulated, resulting in a collection of electron trajectories
coupled with energy losses along the trajectory.

Initially, a number of electrons are generated around the beam position according to the Gaussian distribution:

The scattering process occurs in a simulation volume domain of a predefined material.

Each electron initially has the energy of the beam [image: E_0], that is continuously lost as the electron propagates
through the solid. The trajectory of an electron consists of a number of consequent scattering points, that are
characterised by the electron position and energy. Together, a number of trajectories represent the spacial scattering
of the emitted electrons.

At each scattering point, based on the electron energy, the scattering angle and
the free path length are calculated based on random values from a normal distribution. After this, the trajectory
is extended by an additional segment. The trajectory proceeds likewise until an electron reaches a cut-off energy
or escapes the simulation volume domain:


[image: _images/grid.png]

Simulation volume domain subdivided into cubic cells.




[image: _images/PEs.png]

Two electron trajectories in the simulation volume. Coloring corresponds to electron energy.







2. Electron trajectory discretisation


[image: _images/SEs.png]

Red lines are SE vectors in the vicinity of the surface.



Here, the generated trajectories are subdivided and secondary electrons are emitted based on the energy loss on those
subsegments.

Firstly, the trajectories of primary electrons are finely (less then a nm) subdivided into subsegments. Each subsegment
corresponds to the energy lost by an electron at this distance [image: E]. Based on that energy, the number of emitted
secondary electrons is calculated. Electrons are emitted from from the beginning of the subsegment and the emission
direction is random. The free path that secondary electrons may travel is fixed for a given material, thus all the
emission vectors as assigned the same length. The result at this step is a collection of secondary electron vectors,
stemming from primary electron trajectories.

At this stage, those vectors are as well filtered. All SEs that cannot reach the surface due to being buried too deep
in the solid are separated from those that have their emission sources in the vicinity of the surface.





3. Surface electron flux estimation


[image: _images/se_flux.png]

Surface SE flux, lighter color corresponds to higher flux rate.



Now, the secondary electron vectors are converted into surface secondary electron flux.

Each vector may or may not reach the surface depending on its position and direction. To test each vector for crossing
with the surface, they are followed along and each cell that they traverse through is checked. If a traversed cell
appears to be a surface cell, the number of emitted secondary electron that the vector ‘carries’ is added to that
surface cell. Performing such routine on all the vectors results in accumulation of secondary electrons in the surface
cells and yields a surface secondary electron flux.





4. Beam heating power estimation


[image: _images/dep_energy.png]

Beam heating power distributed per cell, the higher the power the more red is the cell.



Finally, the power of the beam heating is calculated at this step.

The energy of primary electrons is spent as well on Joule heating. Each electron, as it travels through the solid,
deposits a fraction of the lost energy into the solid, resulting in heating of the solid medium.
Due to the fact that the solid is discretised into cubic cells, the heating power is a collective of cells traversed
by primary electrons with energy deposited in them or a collection of volumetric heat sources.

Each trajectory is followed along to determine the distance traveled inside the cells they traverse. Traversed cells
are then added the energy lost by that electron proportional to that distance. This results in a spatially resolved
volumetric heat sources distribution, that follow electron trajectories.

In the end, the resulting distribution is added all the secondary electrons, that were buried too deep. Those electrons
are considered scattered and contribute to the heating process.




	Secondary electron emission energy ([image: \varepsilon]):
	It is the energy required to launch a cascade of secondary electrons.
While these values are tabulated for most of the elements in [Lin2005], compound energies shall be
averaged volumetrically, i.e. AB compound(amorphous):

[image: \overline{\varepsilon}=V_A\cdot\varepsilon_A+V_B\cdot\varepsilon_B],


	where
	[image: V_A] and [image: V_B] are volume fractions of the phases

[image: \varepsilon_A] and [image: \varepsilon_B] are emission activation energies











[Lin2005]
Lin Y., Joy D., A new examination of secondary electron yield data, Surf. Interface Anal. 2005, 37, 895–900









            

          

      

      

    

  

    
      
          
            
  
Diffusion

Surface diffusion plays an important role in precursor coverage replenishment at the beam interaction region (BIR).


[image: _images/diffusive_flow.png]

Diffusive flow



In the discretised simulation volume, diffusion occurs on a monolayer of cells that separates solid and empty cell
domains. It is the same cell layer that contains information about surface precursor coverage.

Solution of the diffusion equation is a subroutine of the reaction-diffusion equation solution. Each time the solution
occurs, it outputs a profile of local precursor changes induced by the diffusion process and then added to the precursor
coverage profile.


Ghost cells

[image: _images/ghost_cells.png]
In order to enable diffusion exclusively along the surface a so-called ‘ghost cell’ method is used.
The thin layer of surface cells is ultimately contained between the void and solid cells.
The solid and void cells that neighbor a surface cell are marked as ghost cells, encapsulating the whole surface.
During the application of the stencil operator, the ghost cells mimic the value in the current cell. This artificially
creates a condition of zero concentration difference and consequently zero diffusive flux.

Diffusion is described via a parabolic PDE equation and thus
requires a special numerical solution.

Characteristic time of the diffusion makes it feasible to use the simplest approach – the FTCS scheme.



Numerical solution

The diffusion equation:

[image: \frac{\partial T}{\partial t}=D\nabla^2T],


	where:
	[image: D] is surface diffusion coefficient [image: \left[ \frac{nm^2}{s} \right ]]

[image: T] is temperature [K]





which is resolved in 3D space:

[image: \frac{\partial T}{\partial t}= D\left(\frac{\partial^2T}{\partial x^2}+\frac{\partial^2T}{\partial y^2}+\frac{\partial^2T}{\partial z^2}\right)]

The solution occurs in a discretized volume domain, where the finest spacial step
along each axis is [image: \Delta x,\Delta y,\Delta z]. Temperature in each cell is addressed by it’s index along each
axis i,j,k. The FTCS scheme can then be described as follows:

[image: \frac{\partial T}{\partial t}=D\left(\frac{T_{i-1,j,k}-2T_{i,j,k}+T_{i+1,j,k}}{\Delta x^2}+ \frac{T_{i,j-1,k}-2T_{i,j,k}+T_{i,j+1,k}}{\Delta y^2}+ \frac{T_{i,j,k-1}-2T_{i,j,k}+T_{i,j,k+1}}{\Delta z^2}\right)]

Partial derivatives are averaged from the current and neighboring cells along a single axis.

For a case with a cubic cell, where [image: \Delta x=\Delta y=\Delta z], the expression can be simplified:

[image: \partial T=D\partial t\left(\frac{T_{i-1,j,k}+T_{i+1,j,k}+T_{i,j-1,k} +T_{i,j+1,k}+T_{i,j,k-1}+T_{i,j,k+1}-6T_{i,j,k}}{\Delta x^2}\right)]


	where:
	[image: D] is surface diffusion coefficient [image: \left[ \frac{nm^2}{s} \right ]]

[image: T_{i,j,k}] is temperature in the given cell [K]

[image: \partial t] is the time step or time resolution, [s]





Using the derived expression, the state of the system at the next time step can be derived from the current state.


[image: _images/stencil.png]

3D Stencil operator



From analysing the expression, it is evident that it sums every neighbor and subtracts the value of the central cell.
Such operation, that is applied to all cells in the same manner is called a stencil.

The Fourier stability criterion for the FTCS scheme is:

[image: F=\frac{2D\Delta t}{\Delta x^2}],

for 3D space [image: F<\frac{1}{6}] yielding maximum stable time step:

[image: \Delta t=\frac{\Delta x^2}{6D}],

while semi-implicit Crank-Nicholson and implicit Euler methods are unconditionally stable.


Nevertheless Crank-Nicholson is unconditionally stable, meaning it works for any time step, it may suffer
oscillations. At the same time, implicit Euler is immune to oscillations, but has only 1st-order accuracy in time.








            

          

      

      

    

  

    
      
          
            
  
Thermal effects

This page covers the model of beam heating influence on the deposit shape
and presents utilised solution for the heat equation.


Temperature dependence

The influence of the beam heating effect through temperature increase is multifold.

[image: _images/temperature_influence_diagram.png]
Initially, the heating power of the beam [image: q] is generated by the Monte Carlo module.

After that, a temperature profile is derived based on [image: q] and thermal conductivity of the deposit [image: k]

The temperature profile is then used to calculate surface profiles of residence time and diffusion coefficient.

Finally, those profiles are used for the calculation of the precursor coverage profile. Precursor coverage then
directly affects the amount of the deposited material.



Heat equation

Both heat distribution and diffusion are described via a parabolic PDE equation and thus
require a numerical solution.

Although, the processes are similar in nature, they occur at characteristic time steps differing by orders of magnitude.
This fact implies usage of different numerical solution for th heat transfer problem.

In the actual version of the package, the default for heat transfer is SOR.

The heat equation:

[image: c_p\rho\frac{\partial T}{\partial t}=k\nabla^2T+q],

which is resolved in 3D space:

[image: c_p\rho\frac{\partial T}{\partial t}= k\left(\frac{\partial^2T}{\partial x^2}+\frac{\partial^2T}{\partial y^2}+\frac{\partial^2T}{\partial z^2}\right)+q]


	where:
	[image: c_p] is the heat capacity of the solid medium [image: \left[ \frac{J}{kg\cdot K} \right ]]

[image: \rho] is the density [image: \left[ \frac{kg}{nm^3} \right ]]

[image: k] is thermal conductance [image: \left[ \frac{W}{nm\cdot K} \right ]]

[image: q] is the heating source originating from electron beam heating [image: \left[ \frac{J}{nm^3} \right ]]

[image: T] is temperature [K]





Due to the fact, that heat transfer characteristic time step is orders of magnitude shorter than one of mass transport
(diffusion), the solution of heat equation requires an accordingly shorter time step. Such fine time discretization
would make the simulation orders of magnitude slower.

Although, the same feature of the heat transfer means that evolution of an equilibrium or steady state occurs
almost instantly [Mutunga2019]. It means that time discretization is neglected and the problem simplifies to a calculation
of a steady state:

[image: k\nabla^2T=-q]

The problem of deriving a steady state is called a relaxation problem and is solved by a family of relaxation methods.
Here it is solved via a Simultaeous Over-Relaxation (SOR) method. Generally, it represents an FTCS scheme, ultimately
applied with the maximum stable time step. The main prerequisition for the SOR method is convergence of the solution.
The convergence is evaluated based on a norm of the difference between current and previous iterations. When the norm
diminishes below a certain value that is called solution accuracy the convergence is reached.

Due to the slow rise of temperature caused by beam heating, a steady state profile can be derived
at a significantly lower rate than the diffusion equation is solved.

Effectively, re-calculation of the steady state temperature profile is necessary approximately 10 times per deposition
time second for the PtC deposit.



[Mutunga2019]
Mutunga E., Winkler R., Sattelkow J. et al., Impact of Electron-Beam Heating during 3D Nanoprinting, ACS Nano 2019, 13, 5198-5213









            

          

      

      

    

  

    
      
          
            
  
febid

FEBID Simulator package



	febid.Process

	Deposition process code



	febid.Statistics

	Module for continuous process data recording



	febid.Structure

	Main internal data framework



	febid.diffusion

	Diffusion module Solution for diffusion equation via FTCS method



	febid.febid_core

	Control core of the simulation



	febid.heat_transfer

	Heat transfer module



	febid.libraries

	Extension modules.



	febid.monte_carlo

	Monte Carlo electron beam – matter interaction simulation subpackage



	febid.simple_patterns

	Stream-file reader and pattern generator



	febid.start

	Scripting template for running series of simulations









            

          

      

      

    

  

    
      
          
            
  
febid.Process

Deposition process code

The Process class implements the methods necessary to support the deposition process.

Functions



	restrict

	Prevent simultaneous call of the decorated methods






Classes



	Process

	Class representing the core deposition process.









            

          

      

      

    

  

    
      
          
            
  
febid.Process.restrict


	
restrict(func)

	Prevent simultaneous call of the decorated methods








            

          

      

      

    

  

    
      
          
            
  
febid.Process.Process


	
class Process(structure, equation_values, timings, deposition_scaling=1, temp_tracking=True, name=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class representing the core deposition process.
It contains all necessary arrays, variables, parameters and methods to construct a continuous deposition process.

Methods



	check_cells_filled

	Check if any deposit cells are fully filled



	deposition

	Calculate an increment of a deposited volume for all irradiated cells over a time step



	diffusion_coefficient

	Calculate surface diffusion coefficient for every surface cell.



	diffusion_coefficient_expression

	Calculate surface diffusion coefficient at a specified temperature.



	equilibrate

	Bring precursor coverage to a steady state with a given accuracy



	get_dt

	



	heat_transfer

	Define heating effect on the process



	precursor_density

	Calculate an increment of the precursor density for every surface cell



	residence_time

	Calculate residence time for every surface cell.



	residence_time_expression

	Calculate residence time at the given temperature :type temp:  :param temp: temperature, K :return:



	update_helper_arrays

	Define new views to data arrays, create axillary indexes and flatten beam_matrix array



	update_surface

	Updates all data arrays after a cell is filled.



	view_dt

	






Attributes



	deposited_vol

	



	kd

	



	kr

	



	max_temperature

	



	nd

	Calculate depleted precursor coverage



	nr

	Calculate replenished precursor coverage



	precursor_min

	







	
check_cells_filled()

	Check if any deposit cells are fully filled


	Returns:

	bool










	
deposition()

	Calculate an increment of a deposited volume for all irradiated cells over a time step


	Returns:

	










	
diffusion_coefficient()

	Calculate surface diffusion coefficient for every surface cell.


	Returns:

	










	
diffusion_coefficient_expression(temp=294)

	Calculate surface diffusion coefficient at a specified temperature.


	Parameters:

	temp – temperature, K



	Returns:

	










	
equilibrate(eps=0.0001, max_it=10000)

	Bring precursor coverage to a steady state with a given accuracy

It is advised to run this method after updating the surface in order to determine a more accurate precursor
density value for newly acquired cells


	Parameters:

	eps – desired accuracy










	
heat_transfer(heating)

	Define heating effect on the process


	Parameters:

	heating – volumetric heat sources distribution



	Returns:

	










	
property nd

	Calculate depleted precursor coverage


	Returns:

	










	
property nr

	Calculate replenished precursor coverage


	Returns:

	










	
precursor_density()

	Calculate an increment of the precursor density for every surface cell


	Returns:

	










	
residence_time()

	Calculate residence time for every surface cell.


	Returns:

	










	
residence_time_expression(temp=294)

	Calculate residence time at the given temperature
:type temp: 
:param temp: temperature, K
:return:






	
update_helper_arrays()

	Define new views to data arrays, create axillary indexes and flatten beam_matrix array


	Returns:

	










	
update_surface()

	Updates all data arrays after a cell is filled.


	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
febid.Statistics

Module for continuous process data recording

Classes



	Statistics

	Class implementing statistics gathering and saving(to excel).









            

          

      

      

    

  

    
      
          
            
  
febid.Statistics.Statistics


	
class Statistics(filename='run_id713422')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class implementing statistics gathering and saving(to excel).


Report contains following columns:




Time, Time passed, Simulation time, Simulation speed, N of cells(filled), Volume, Min.precursor coverage, Growth rate


It is possible to automatically include graphs into Excel files
Additionally, initial simulation parameters are added to 3 separate sheets




Methods



	add_plot

	



	add_plots

	Add scatter plots to the Excel-file.



	add_stat

	Add a new statistic to the table.



	append

	Add a new record to the statistics.



	get_growth_rate

	



	get_params

	Collect initial parameters and save them to Excel-file



	plot

	['Time', 'Sim.time', 'Sim.speed', 'Volume', Min.precursor coverage', 'Growth rate'] :type x:  :param x: :type y:  :param y: :return:



	save_to_file

	Write collected statistics to an Excel file.






Attributes



	shape

	







	
add_plots(*args, position='J1')

	Add scatter plots to the Excel-file.


Args is a list of tuples of column names to be plotted: [(x1, y1), (x2, y2)]
Position is a list of cells where to put the graphs (by the upper-left corner)









	
add_stat(name, first_value=0)

	Add a new statistic to the table.
It is recorded in monitoring function and how it is collected is up to the user.






	
append(*stats)

	Add a new record to the statistics.
The number of stats must include manually added ones


	Parameters:

	stats – current simulation time, current number of deposited cells and manually added columns



	Returns:

	










	
get_params(arg, name)

	Collect initial parameters and save them to Excel-file


	Parameters:

	
	arg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of parameters


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – a name for the provided parameters






	Returns:

	










	
plot(x, y)

	[‘Time’, ‘Sim.time’, ‘Sim.speed’, ‘Volume’, Min.precursor coverage’, ‘Growth rate’]
:type x: 
:param x:
:type y: 
:param y:
:return:






	
save_to_file(force=False)

	Write collected statistics to an Excel file.
The gathered statistics are appended to the end of the table every couple of seconds
Caution: the session keeps the file open until it finishes.












            

          

      

      

    

  

    
      
          
            
  
febid.Structure

Main internal data framework

Classes



	Structure

	Represents the discretized space of the simulation volume and keeps the current state of the structure.









            

          

      

      

    

  

    
      
          
            
  
febid.Structure.Structure


	
class Structure(precursor_empty=0.0, precursor_full=1.0, deposit_empty=0.0, deposit_full_substrate=-2.0, deposit_full_deponat=-1.0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents the discretized space of the simulation volume and keeps the current state of the structure.

Set values to mark empty and full cells for precursor and deposit arrays.


	Parameters:

	
	precursor_empty – 


	precursor_full – 


	deposit_empty – 


	deposit_full_substrate – 


	deposit_full_deponat – 








Methods



	create_from_parameters

	Frame initializer.



	define_ghosts

	Determining ghost shell wrapping the surface This is crucial for the diffusion to work if rolling method is used.



	define_semi_surface

	Determining semi-surface of the initial structure



	define_surface

	Determining surface of the initial structure



	define_surface_neighbors

	Find solid cells that are n-closest neighbors to the surface cells.



	fill_surface

	Covers surface of the deposit with initial precursor density



	flush_structure

	Resets and prepares initial state of the grid.



	load_from_vtk

	Frame initializer.



	max_z

	Get the height of the structure.



	resize_structure

	Resize the data framework.



	save_to_vtk

	



	update_shape

	Read the shape of the data and set shape and absolute shape of the class.







	
create_from_parameters(cell_dim=5, width=50, length=50, height=100, substrate_height=4, nr=0)

	Frame initializer. Create a discretized simulation volume framework from parameters.


	Parameters:

	
	cell_dim – size of a cell, nm


	width – width of the simulation chamber (along X-axis), number of cells


	length – length of the simulation chamber (along Y-axis), number of cells


	height – height of the simulation chamber (along Z-axis), number of cells


	substrate_height – thickness of the substrate along Z-axis, number of cells


	nr – initial precursor density, normalized






	Returns:

	










	
define_ghosts()

	Determining ghost shell wrapping the surface
This is crucial for the diffusion to work if rolling method is used.


	Returns:

	










	
define_semi_surface()

	Determining semi-surface of the initial structure

Semi-surface cell is a concept that enables diffusion on the steps of the structure.
These cells take part neither in the deposition process, nor in adsorption/desorption.

If semi-surface cell turns into a regular surface cell, the precursor density in it is preserved.
:return:






	
define_surface()

	Determining surface of the initial structure


	Returns:

	










	
define_surface_neighbors(n=0, deposit=None, surface=None, neighbors=None)

	Find solid cells that are n-closest neighbors to the surface cells.
If deposit, surface amd neighbors are provided, nearest neighbors are defined for them.


	Parameters:

	n – order of nearest neighbor, if 0, then index all the solid cells



	Returns:

	










	
fill_surface(nr)

	Covers surface of the deposit with initial precursor density


	Parameters:

	nr (float [https://docs.python.org/3/library/functions.html#float]) – initial precursor density



	Returns:

	










	
flush_structure()

	Resets and prepares initial state of the grid.


	Parameters:

	
	substrate – 3D precursor density array


	deposit – 3D deposit array


	init_density – initial precursor density on the surface


	init_deposit – initial deposit on the surface, can be a 2D array with the same size as deposit array along 0 and 1 dimensions


	volume_prefill – initial deposit in the volume, can be a predefined structure in an 3D array same size as deposit array (constant value is virtual and used for code development)






	Returns:

	










	
load_from_vtk(vtk_obj, add_substrate=4)

	Frame initializer. Load structure from a .vtk file.

A vtk object can either represent only a single solid structure array or a result of a deposition process
with the full set of arrays.

Important requirement: vtk data must be a UniformGrid with ‘spacing’ attribute.


	Parameters:

	
	vtk_obj (DataSet) – a vtk object from file


	add_substrate – if a value is specified, a substrate with such height will be created for simple vtk files. 0 or False otherwise. If the value is not a multiple of the ‘spacing’ attribute, it will be rounded down.













	
max_z()

	Get the height of the structure.
:return: 0-axis index of the highest cell






	
resize_structure(delta_z=0, delta_y=0, delta_x=0)

	Resize the data framework. The specified lengths are attached along the axes.

If any of the data is referenced, only a warning is shown and data is resized anyway.

Changing dimensions along y and x axes should be done mindful, because if these require extension
in the negative direction, that data has to be centered after the resizing.


	Parameters:

	
	delta_z – increment from the z-axis, nm


	delta_y – increment for the y-axis, nm


	delta_x – increment fro the x-axis, nm






	Returns:

	










	
update_shape()

	Read the shape of the data and set shape and absolute shape of the class.
:return:












            

          

      

      

    

  

    
      
          
            
  
febid.diffusion

Diffusion module
Solution for diffusion equation via FTCS method

Functions



	diffusion_ftcs

	Calculate diffusion term for the surface cells using stencil approach



	get_diffusion_stability_time

	Get max stable time step for FTCS solution.



	laplace_term_stencil

	Apply stencil operator to the selected cells in the grid.



	prepare_surface_index

	Get a multiindex from the surface array.



	stencil_debug

	









            

          

      

      

    

  

    
      
          
            
  
febid.diffusion.diffusion_ftcs


	
diffusion_ftcs(grid, surface, D, dt, cell_dim, surface_index=None, flat=True, add=0)

	Calculate diffusion term for the surface cells using stencil approach

Nevertheless the ‘surface_index’ is an optional argument,
it is highly recommended to handle index from the caller function


	Parameters:

	
	grid – 3D precursor density array, normalized


	surface – 3D boolean surface array


	D – diffusion coefficient, nm^2/s


	dt – time interval over which diffusion term is calculated, s


	cell_dim – grid space step, nm


	surface_index – a tuple of indices of surface cells for the 3 dimensions


	flat – if True, returns a flat array of surface cells. Otherwise, returns a 3d array with the same shape as grid.


	add – Runge-Kutta intermediate member






	Returns:

	3d or 1d ndarray












            

          

      

      

    

  

    
      
          
            
  
febid.diffusion.get_diffusion_stability_time


	
get_diffusion_stability_time(D, dx)

	Get max stable time step for FTCS solution.


	Parameters:

	
	D – diffusion coefficient, nm/nm^2


	dx – grid spacing, nm






	Returns:

	time step, s












            

          

      

      

    

  

    
      
          
            
  
febid.diffusion.laplace_term_stencil


	
laplace_term_stencil(grid, surface_index)

	Apply stencil operator to the selected cells in the grid.


	Parameters:

	
	grid – operated grid


	surface_index – selected cell index [z, y, x]






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.diffusion.prepare_surface_index


	
prepare_surface_index(surface)

	Get a multiindex from the surface array.


	Parameters:

	surface (ndarray) – boolean array defining surface cells position in space



	Returns:

	tuple of 1d ndarrays












            

          

      

      

    

  

    
      
          
            
  
febid.diffusion.stencil_debug


	
stencil_debug(grid_out, grid, z_index, y_index, x_index)

	






            

          

      

      

    

  

    
      
          
            
  
febid.febid_core

Control core of the simulation

Functions



	buffer_constants

	Calculate necessary constants and prepare parameters for modules



	dump_structure

	



	initialize_framework

	Open simulation configuration files and prepare data framework



	monitoring

	A daemon process function to manage statistics gathering and graphics update.



	print_all

	Main event loop, that iterates through consequent points in a stream-file.



	print_step

	Sub-loop, that iterates through the dwell time by a time step



	run_febid

	Create necessary objects and start the FEBID process.



	run_febid_interface

	



	update_graphical

	Update the visual representation of the current process state









            

          

      

      

    

  

    
      
          
            
  
febid.febid_core.buffer_constants


	
buffer_constants(precursor, settings, cell_dimension)

	Calculate necessary constants and prepare parameters for modules


	Parameters:

	
	precursor (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – precursor properties


	settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – simulation conditions


	cell_dimension (int [https://docs.python.org/3/library/functions.html#int]) – side length of a square cell, nm






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.febid_core.dump_structure


	
dump_structure(structure, sim_t=None, t=None, beam_position=None, filename='FEBID_result')

	






            

          

      

      

    

  

    
      
          
            
  
febid.febid_core.initialize_framework


	
initialize_framework(from_file=False, precursor=None, settings=None, sim_params=None, vtk_file=None, geom_params=None)

	
Open simulation configuration files and prepare data framework





	Parameters:

	
	from_file – True to load structure from vtk file


	precursor – path to a file with precursor properties


	settings – path to a file with beam parameters and settings


	sim_params – path to a file with simulation volume parameters


	vtk_file – if from_file is True, path to a vtk file to get structure from


	geom_params – a list of predetermined simulation volume parameters






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.febid_core.monitoring


	
monitoring(pr, stats=None, location=None, stats_rate=60, dump_rate=60, render=False, frame_rate=1, refresh_rate=0.5, displayed_data='precursor')

	A daemon process function to manage statistics gathering and graphics update.


	Parameters:

	
	pr (Process) – object of the core deposition process


	stats (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Statistics]) – object for gathering monitoring data


	location – file saving directory


	stats_rate – statistics recording interval in seconds, None disables statistics recording


	dump_rate – dumping interval in seconds, None disables structure dumping


	render – True will enable graphical monitoring of the process


	frame_rate – redrawing delay


	refresh_rate – sleep time






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.febid_core.print_all


	
print_all(path, process_obj, sim)

	Main event loop, that iterates through consequent points in a stream-file.


	Parameters:

	
	path – patterning path from a stream file


	process_obj – Process class instance


	sim – Monte Carlo simulation object






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.febid_core.print_step


	
print_step(y, x, dwell_time, pr, sim, t)

	Sub-loop, that iterates through the dwell time by a time step


	Parameters:

	
	y – spot y-coordinate


	x – spot x-coordinate


	dwell_time – time of the exposure


	pr (Process) – Process object


	sim – MC simulation object


	t – tqdm progress bar






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.febid_core.run_febid


	
run_febid(structure, precursor_params, settings, sim_params, path, temperature_tracking, gather_stats=False, monitor_kwargs=None)

	
Create necessary objects and start the FEBID process.





	Parameters:

	
	structure – structure object


	precursor_params – precursor properties


	settings – beam and precursor flux settings


	sim_params – simulation volume properties


	path – printing path


	gather_stats – True enables statistics gathering


	monitor_kwargs – settings for the monitoring function






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.febid_core.run_febid_interface


	
run_febid_interface(structure, precursor_params, settings, sim_params, path, temperature_tracking, saving_params, rendering)

	






            

          

      

      

    

  

    
      
          
            
  
febid.febid_core.update_graphical


	
update_graphical(rn, pr, time_spent, displayed_data='precursor', update=True)

	Update the visual representation of the current process state


	Parameters:

	
	rn (Render) – visual scene object


	pr (Process) – process object


	time_step – 


	time_spent – 






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.heat_transfer

Heat transfer module

Functions



	fit_exponential

	Fit data to an exponential equation y = a*exp(b*x)



	fragmentise

	Collect columns along each axis that do not contain zero cells



	get_heat_transfer_stability_time

	Get the largest stable time step for the FTCS scheme.



	heat_transfer_BE

	Calculate temperature distribution after the specified time step by solving the parabollic heat equation.



	heat_transfer_steady_sor

	Find steady-state solution to the heat equation with the given accuracy



	prepare_solid_index

	



	subdivide_list

	Extract start and end indexes of the non-zero sections in the array.



	temperature_stencil

	Calculates diffusion term for the surface cells using stencil operator









            

          

      

      

    

  

    
      
          
            
  
febid.heat_transfer.fit_exponential


	
fit_exponential(x0, y0)

	Fit data to an exponential equation y = a*exp(b*x)


	Parameters:

	
	x0 – x coordinates


	y0 – y coordinates






	Returns:

	ln(a), b












            

          

      

      

    

  

    
      
          
            
  
febid.heat_transfer.fragmentise


	
fragmentise(grid)

	Collect columns along each axis that do not contain zero cells


	Parameters:

	grid – 3d array



	Returns:

	array of index triples












            

          

      

      

    

  

    
      
          
            
  
febid.heat_transfer.get_heat_transfer_stability_time


	
get_heat_transfer_stability_time(k, rho, cp, dx)

	Get the largest stable time step for the FTCS scheme.


	Parameters:

	
	k – thermal conductivity, [W/m/K]


	rho – density, [g/cm^3]


	cp – heat capacity, [J/kg/K]


	dx – grid step (cell size), nm






	Returns:

	time step in seconds












            

          

      

      

    

  

    
      
          
            
  
febid.heat_transfer.heat_transfer_BE


	
heat_transfer_BE(grid, conditions, k, cp, rho, dt, dl, heat_source=0, substrate_T=294)

	Calculate temperature distribution after the specified time step by solving the parabollic heat equation.

The heat equation with the heat source term is solved by backward Euler scheme.

Fractional step method is used to numerically solve the PDE in 3D space.



	There are two options for boundary conditions:
	‘isolated’: the structure is isolated from both void and substrate

“heatsink’: the structure disipates heat through the substarete that has a constant temperature.


















            

          

      

      

    

  

    
      
          
            
  
febid.heat_transfer.heat_transfer_steady_sor


	
heat_transfer_steady_sor(grid, k, dl, heat_source, eps, solid_index=None)

	Find steady-state solution to the heat equation with the given accuracy


	Parameters:

	
	grid – 3D temperature array


	k – thermal conductivity, [W/K/m]


	dl – grid spacing (cell size), nm


	heat_source – 3D volumetric heating source array, [W/nm^3]


	eps – desired accuracy


	solid_index – indexes of solid cells






	Returns:

	3D temperature array












            

          

      

      

    

  

    
      
          
            
  
febid.heat_transfer.prepare_solid_index


	
prepare_solid_index(grid)

	






            

          

      

      

    

  

    
      
          
            
  
febid.heat_transfer.subdivide_list


	
subdivide_list(grid, i=0, j=0, axis=2)

	Extract start and end indexes of the non-zero sections in the array.

This function virtually prevents zeros from appearing in a solution matrix by extracting the ‘solid’ cells along
the slice.


	Parameters:

	
	grid – 1D array


	i – first index of the current slice


	j – second index of the current slice


	axis – axis along which the slice was taken






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.heat_transfer.temperature_stencil


	
temperature_stencil(grid, k, cp, rho, dt, dl, heat_source=0, solid_index=None, substrate_T=294, flat=False, add=0)

	Calculates diffusion term for the surface cells using stencil operator

Nevertheless, ‘solid_index’ is an optional argument,
it is highly recommended to handle index from the caller function.


	Parameters:

	
	grid – 3D temperature array


	k – thermal conductivity, [W/K/m]


	cp – heat capacity, [J/kg/K]


	rho – density, [g/cm^3]


	dt – time interval over which diffusion term is calculated, s


	dl – grid spacing (cell size), nm


	heat_source – 3D volumetric heating source array, [W/nm^3]


	solid_index – indexes of solid cells


	substrate_T – temperature of the substrate


	flat – if True, returns a flat array of surface cells. Otherwise, returns a 3d array with the same shape as grid.


	add – 






	Returns:

	3d or 1d ndarray












            

          

      

      

    

  

    
      
          
            
  
febid.libraries

Extension modules. Contains electron ray-tracing, stencil and visualisation modules



	febid.libraries.pde

	



	febid.libraries.ray_traversal

	Extension modules.



	febid.libraries.rolling

	Extension modules.



	febid.libraries.vtk_rendering

	Visualization utilities via Pyvista









            

          

      

      

    

  

    
      
          
            
  
febid.libraries.pde



	febid.libraries.pde.tridiag

	Tridiagonal parallel matrix solver









            

          

      

      

    

  

    
      
          
            
  
febid.libraries.pde.tridiag

Tridiagonal parallel matrix solver

Functions



	adi_3d

	Solve a PDE in 3D uniform domain using ADI method with backward Euler scheme.



	adi_3d_indexing

	Solve a PDE in 3D domain using ADI method.



	tridiag_1d

	Tridiagonal matrix solver









            

          

      

      

    

  

    
      
          
            
  
febid.libraries.pde.tridiag.adi_3d


	
adi_3d()

	Solve a PDE in 3D uniform domain using ADI method with backward Euler scheme.


	Parameters:

	
	d – right hand side vector


	x – vector to be solved


	a – equation coefficient


	boundaries – type of boundary conditions: 0 for 0 at boundaries, 1 for fixed boundaries, 2 for no flow through boundaries















            

          

      

      

    

  

    
      
          
            
  
febid.libraries.pde.tridiag.adi_3d_indexing


	
adi_3d_indexing()

	Solve a PDE in 3D domain using ADI method.
Use provided slices to solve for certain regions.


	Parameters:

	
	d – right hand side vector


	x – vector to be solved


	s1 – index triples for x-axis, that define a 1d slice


	s2 – index triples for y-axis, that define a 1d slice


	s3 – index triples for z-axis, that define a 1d slice


	a – equation coefficient, proportional to diffusivity


	boundaries – type of boundary conditions: 0 for 0 at boundaries, 1 for fixed boundaries, 2 for no flow through boundaries















            

          

      

      

    

  

    
      
          
            
  
febid.libraries.pde.tridiag.tridiag_1d


	
tridiag_1d()

	Tridiagonal matrix solver

The solver uses Thomas algorithm.


	Parameters:

	
	d – right hand side vector


	x – output vector


	b – main diagonal value


	c – upper and lower diagonal value


	b0 – boundary value for main diagonal


	c0 – boundary value for upper and lower diagonals






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.libraries.ray_traversal

Extension modules. Contains electron ray-tracing, stencil and visualisation modules



	febid.libraries.ray_traversal.traversal

	









            

          

      

      

    

  

    
      
          
            
  
febid.libraries.ray_traversal.traversal

Functions



	det_1d

	Calculate the length of a vector :param vector: array with 3 elements :return:



	det_2d

	Calculate the length of vectors in an array



	divide_segments

	



	generate_flux

	Wrapper for Cython function.



	get_Eloss

	



	get_alpha_and_lambda

	



	get_direction

	



	get_solid_crossing

	



	get_surface_crossing

	



	get_surface_solid_crossing

	



	traverse_segment

	Wrapper for Cython function.









            

          

      

      

    

  

    
      
          
            
  
febid.libraries.ray_traversal.traversal.det_1d


	
det_1d(double[:] vector) → double

	Calculate the length of a vector
:param vector: array with 3 elements
:return:








            

          

      

      

    

  

    
      
          
            
  
febid.libraries.ray_traversal.traversal.det_2d


	
det_2d(double[:, :] arr_of_vectors, double[:] out) → void

	Calculate the length of vectors in an array


	Parameters:

	
	arr_of_vectors – array of vectors listed along 0 axis


	out – output array, has to be the same length as input’s 0 axis






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.libraries.ray_traversal.traversal.divide_segments


	
divide_segments(double[:] dEs, double[:, :] coords, int[:] num, double[:, :] delta, double[:, :] pieces, double[:] energies) → void

	






            

          

      

      

    

  

    
      
          
            
  
febid.libraries.ray_traversal.traversal.generate_flux


	
generate_flux(double[:, :, :] flux, unsigned char[:, :, :] surface, int cell_dim, double[:, :] p0, double[:, :] pn, double[:, :] direction, signed char[:, :] index_corr, double[:, :] t, double[:, :] step_t, double[:] n_se, int max_count) → double

	Wrapper for Cython function.
Generate surface SE flux.


	Parameters:

	
	flux – array to accumulate SEs


	surface – array describing surface


	cell_dim – size of a grid cell


	p0 – starting points


	pn – end-points


	direction – pointing directions(vectors)


	t – arbitrary values to detect crossing


	step_t – increments of t value


	n_se – number of SEs emitted


	max_count – maximum number of crossing events per emission






	Returns:

	total SE yield












            

          

      

      

    

  

    
      
          
            
  
febid.libraries.ray_traversal.traversal.get_Eloss


	
get_Eloss(double E, int Z, double rho, double A, double J, double step) → double

	






            

          

      

      

    

  

    
      
          
            
  
febid.libraries.ray_traversal.traversal.get_alpha_and_lambda


	
get_alpha_and_lambda(double E, int Z, double rho, double A) -> (float, float)

	






            

          

      

      

    

  

    
      
          
            
  
febid.libraries.ray_traversal.traversal.get_direction


	
get_direction(double ctheta, double stheta, double psi, double cz, double cy, double cx) -> (float, float, float)

	






            

          

      

      

    

  

    
      
          
            
  
febid.libraries.ray_traversal.traversal.get_solid_crossing


	
get_solid_crossing(double[:, :, :] grid, int cell_dim, double[:] p0, double[:] direction, double[:] t, double[:] step_t, signed char[:] sign, double[:] coord) → unsigned char

	






            

          

      

      

    

  

    
      
          
            
  
febid.libraries.ray_traversal.traversal.get_surface_crossing


	
get_surface_crossing(unsigned char[:, :, :] surface, int cell_dim, double[:] p0, double[:] pn, double[:] direction, double[:] t, double[:] step_t, signed char[:] sign, double[:] coord) → void

	






            

          

      

      

    

  

    
      
          
            
  
febid.libraries.ray_traversal.traversal.get_surface_solid_crossing


	
get_surface_solid_crossing(unsigned char[:, :, :] surface, double[:, :, :] grid, int cell_dim, double[:] p0, double[:] pn, double[:] direction, double[:] t, double[:] step_t, signed char[:] sign, double[:] coord, double[:] coord1) → unsigned char

	






            

          

      

      

    

  

    
      
          
            
  
febid.libraries.ray_traversal.traversal.traverse_segment


	
traverse_segment(double[:, :, :] energies, double[:, :, :] grid, int cell_dim, double[:, :] p0, double[:, :] pn, double[:, :] direction, double[:, :] t, double[:, :] step_t, double[:] dEs, int max_count) → double

	Wrapper for Cython function.
Deposits energies to the structure based on the energy losses.


	Parameters:

	
	L – distances between segment points


	cell_dim – size of a cell


	dEs – energies lost on segments


	direction – segment pointing direction


	energies – structured array of deposited energies


	grid – surface array


	p0 – starting points of segments


	pn – c of segments


	step_t – increments of t value


	t – arbitrary values to detect crossing


	N – number of segments






	Returns:

	total deposited energy












            

          

      

      

    

  

    
      
          
            
  
febid.libraries.rolling

Extension modules. Contains electron ray-tracing, stencil and visualisation modules



	febid.libraries.rolling.roll

	









            

          

      

      

    

  

    
      
          
            
  
febid.libraries.rolling.roll

Functions



	rolling_1d

	



	rolling_2d

	Analog of the np.roll for 2d arrays :param arr: array to add to :param brr: addition



	rolling_3d

	Analog of the np.roll for 3d arrays :param arr: array to add to :param brr: addition



	stencil

	Stencil operator.



	stencil_gs

	Stencil operator.



	stencil_sor

	Stencil operator.



	surface_temp_av

	Define temperature of the surface cells by averaging temperature of the neighboring solid cells









            

          

      

      

    

  

    
      
          
            
  
febid.libraries.rolling.roll.rolling_1d


	
rolling_1d()

	






            

          

      

      

    

  

    
      
          
            
  
febid.libraries.rolling.roll.rolling_2d


	
rolling_2d()

	Analog of the np.roll for 2d arrays
:param arr: array to add to
:param brr: addition


	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.libraries.rolling.roll.rolling_3d


	
rolling_3d()

	Analog of the np.roll for 3d arrays
:param arr: array to add to
:param brr: addition


	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.libraries.rolling.roll.stencil


	
stencil()

	Stencil operator. Sums all the neighbors to the current cell. 
If a neighbor is 0 or out of the bounds, then adds cell’s current value to itself.
Arrays must have the same shape.
:param grid_out: operated array
:param grid: source array
:param z: first array index
:param y: second array index
:param x: third array index 
:return:








            

          

      

      

    

  

    
      
          
            
  
febid.libraries.rolling.roll.stencil_gs


	
stencil_gs()

	Stencil operator. Sums all the neighbors to the current cell. 
If a neighbor is 0 or out of the bounds, then adds cell’s current value to itself.
Arrays must have the same shape.
:param grid: operated array
:param s: power source array
:param w: over-relaxation parameter
:param z_index: first array index
:param y_index: second array index
:param x_index: third array index
:return:








            

          

      

      

    

  

    
      
          
            
  
febid.libraries.rolling.roll.stencil_sor


	
stencil_sor()

	Stencil operator. Sums all the neighbors to the current cell. 
If a neighbor is 0 or out of the bounds, then adds cell’s current value to itself.
Arrays must have the same shape.
:param grid: operated array
:param s: power source array
:param w: over-relaxation parameter
:param z_index: first array index
:param y_index: second array index
:param x_index: third array index
:return:








            

          

      

      

    

  

    
      
          
            
  
febid.libraries.rolling.roll.surface_temp_av


	
surface_temp_av()

	Define temperature of the surface cells by averaging temperature of the neighboring solid cells


	Parameters:

	
	surface_temp – surface temperature array


	temp – solid temperature array


	z – first array index


	y – second array index


	x – third array index






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.libraries.vtk_rendering

Visualization utilities via Pyvista



	febid.libraries.vtk_rendering.VTK_Rendering

	Core visualization module



	febid.libraries.vtk_rendering.show_animation_new

	View series of consequent 3D-Structure files as an animated process.



	febid.libraries.vtk_rendering.show_file

	View the 3D-structure files produced by the simulation.









            

          

      

      

    

  

    
      
          
            
  
febid.libraries.vtk_rendering.VTK_Rendering

Core visualization module

Functions



	export_obj

	Export deposited structure as an .obj file



	numpy_to_vtk

	Convert numpy array to a VTK-datastructure (UniformGrid or UnstructuredGrid).



	read_field_data

	Read run time, simulation time and beam position from vtk-file.



	save_deposited_structure

	Save current deposition result to a vtk file.






Classes



	Render

	Class implementing rendering utilities for visualizing of Numpy data using Pyvista









            

          

      

      

    

  

    
      
          
            
  
febid.libraries.vtk_rendering.VTK_Rendering.export_obj


	
export_obj(structure, filename=None)

	Export deposited structure as an .obj file


	Parameters:

	
	structure – Structure class instance, must have ‘deposit’ array and ‘cell_dimension’ value


	filename – full path with file name






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.libraries.vtk_rendering.VTK_Rendering.numpy_to_vtk


	
numpy_to_vtk(arr, cell_dim, data_name='scalar', grid=None, unstructured=False)

	Convert numpy array to a VTK-datastructure (UniformGrid or UnstructuredGrid).
If grid is provided, add new dataset to that grid.


	Parameters:

	
	arr – numpy array


	cell_dim – array cell (cubic) edge length


	data_name – name of data


	grid – existing UniformGrid


	unstructured – if True, return an UnstructuredGrid






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.libraries.vtk_rendering.VTK_Rendering.read_field_data


	
read_field_data(vtk_obj)

	Read run time, simulation time and beam position from vtk-file.


	Parameters:

	vtk_obj – VTK-object (UniformGrid)



	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.libraries.vtk_rendering.VTK_Rendering.save_deposited_structure


	
save_deposited_structure(structure, sim_t=None, t=None, beam_position=None, filename=None)

	Save current deposition result to a vtk file.
If filename does not contain path, saves to the current directory.


	Parameters:

	
	structure – an instance of the current state of the process


	sim_t – simulation time, s


	t – run time


	beam_position – (x,y) current position of the beam


	filename – full file name






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.libraries.vtk_rendering.VTK_Rendering.Render


	
class Render(cell_dim, font=12, button_size=25)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class implementing rendering utilities for visualizing of Numpy data using Pyvista


	Parameters:

	
	cell_dim (int [https://docs.python.org/3/library/functions.html#int]) – cell data spacing for VTK objects


	font – button caption font size


	button_size – size of the show on/off button








Methods



	save_3Darray

	Dump a Numpy array to a vtk file with a specified name and creation date



	show

	Shows plotting scene



	show_full_structure

	Render and plot all the structure components



	show_mc_result

	



	update

	Update the plot



	update_mask

	







	
class SetVisibilityCallback(actor)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Helper callback to keep a reference to the actor being modified.
This helps button show and hide plot elements


	
__call__(state)

	Call self as a function.










	
save_3Darray(filename, arr, data_name='scalar')

	Dump a Numpy array to a vtk file with a specified name and creation date


	Parameters:

	
	filename – distinct name of the file


	arr – array to save


	data_name – name of the data to include in the vtk dataset






	Returns:

	










	
show(screenshot=False, show_grid=True, keep_plot=False, interactive_update=False, cam_pos=None)

	Shows plotting scene


	Parameters:

	
	screenshot – if True, a screenshot of the scene will be saved upon showing


	show_grid – indicates axes and scales


	keep_plot – if True, creates a copy of current Plotter before showing


	interactive_update – if True, code execution does not stop while scene window is opened


	cam_pos – camera view






	Returns:

	current camera view










	
show_full_structure(structure, struct=True, deposit=True, precursor=True, surface=True, semi_surface=True, temperature=True, ghosts=True, t=None, sim_time=None, beam=None, cam_pos=None)

	Render and plot all the structure components


	Parameters:

	
	structure (Structure) – data object


	struct – if True, plot solid structure


	deposit – if True, plot deposit on the surface


	precursor – if True, plot precursor surface density


	surface – if True, color all surface cells


	semi_surface – if True, color all semi_surface cells


	ghosts – if True, color ghost cells






	Returns:

	










	
update(time=1, force_redraw=False)

	Update the plot


	Parameters:

	
	time – minimum time before each subsequent update


	force_redraw – redraw the plot immediately






	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
febid.libraries.vtk_rendering.show_animation_new

View series of consequent 3D-Structure files as an animated process.

Functions



	open_file

	Gather files and timestamps sorted in the order of creation



	show_animation

	Show animated process from series of vtk files.









            

          

      

      

    

  

    
      
          
            
  
febid.libraries.vtk_rendering.show_animation_new.open_file


	
open_file(directory='')

	Gather files and timestamps sorted in the order of creation


	Parameters:

	directory – folder with vtk files



	Returns:

	filenames and timestamps












            

          

      

      

    

  

    
      
          
            
  
febid.libraries.vtk_rendering.show_animation_new.show_animation


	
show_animation(directory='', show='precursor')

	Show animated process from series of vtk files.
Files must have consequent creation dates to align correctly


	Parameters:

	
	directory – folder with vtk files


	show – which dataset to use for imaging. Accepts ‘precursor’ for surface precursor density or ‘deposit’ for surface deposit filling.






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.libraries.vtk_rendering.show_file

View the 3D-structure files produced by the simulation.

Functions



	show_structure

	









            

          

      

      

    

  

    
      
          
            
  
febid.libraries.vtk_rendering.show_file.show_structure


	
show_structure(filenames, solid=True, deposit=True, precursor=True, surface=True, semi_surface=True, ghost=True)

	






            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo

Monte Carlo electron beam – matter interaction simulation subpackage



	febid.monte_carlo.compiled

	



	febid.monte_carlo.etraj3d

	Monte Carlo simulation main module



	febid.monte_carlo.etrajectory

	Primary electron trajectory simulator



	febid.monte_carlo.etrajmap3d

	Electron-matter interaction simulator



	febid.monte_carlo.mc_base

	Monte Carlo simulator utility module









            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.compiled



	febid.monte_carlo.compiled.etrajectory_c

	









            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.compiled.etrajectory_c

Functions



	get_materials

	



	start_sim

	






Classes



	BuffVector

	



	Electron

	



	SimulationVolume

	









            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.compiled.etrajectory_c.get_materials


	
get_materials()

	






            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.compiled.etrajectory_c.start_sim


	
start_sim()

	






            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.compiled.etrajectory_c.BuffVector


	
class BuffVector

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Methods













            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.compiled.etrajectory_c.Electron


	
class Electron

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Methods













            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.compiled.etrajectory_c.SimulationVolume


	
class SimulationVolume

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Methods













            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.etraj3d

Monte Carlo simulation main module

Functions



	run_mc_simulation

	Create necessary objects and run the MC simulation






Classes



	MC_Simulation

	Monte Carlo simulation main class









            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.etraj3d.run_mc_simulation


	
run_mc_simulation(structure, E0=20, sigma=5, n=1, N=100, pos='center', precursor='Au', Emin=0.1, emission_fraction=0.6, heating=False, params={}, cam_pos=None)

	Create necessary objects and run the MC simulation


	Parameters:

	
	structure – 


	E0 – 


	sigma – 


	N – 


	pos – 


	precursor – 


	Emin – 






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.etraj3d.MC_Simulation


	
class MC_Simulation(structure, mc_params)

	Bases: MC_Sim_Base

Monte Carlo simulation main class

Methods



	plot

	Show the structure with surface electron flux and electron trajectories



	plot_flux_2d

	



	run_simulation

	Run MC simulation with the beam coordinates



	update_structure

	Renew memory addresses of the arrays






Attributes



	shape

	



	shape_abs

	







	
plot(primary_e=True, secondary_flux=True, secondary_e=False, heat_total=False, heat_pe=False, heat_se=False, timings=(None, None, None), cam_pos=None)

	Show the structure with surface electron flux and electron trajectories


	Returns:

	










	
run_simulation(y0, x0, heat, N=None)

	Run MC simulation with the beam coordinates


	Parameters:

	
	y0 – spot y-coordinate


	x0 – spot x-coordinate


	heat – if True, calculate beam heating






	Returns:

	SE surface flux










	
update_structure(structure)

	Renew memory addresses of the arrays


	Parameters:

	structure – 



	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.etrajectory

Primary electron trajectory simulator

Classes



	ETrajectory

	A class responsible for the generation and scattering of electron trajectories



	Electron

	A class representing a single electron with its properties and methods to define its scattering vector.









            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.etrajectory.ETrajectory


	
class ETrajectory

	Bases: MC_Sim_Base

A class responsible for the generation and scattering of electron trajectories

Methods



	get_crossing_point

	



	get_next_crossing

	Get next two crossing points and a flag showing if volume boundaries are met



	get_norm_factor

	Calculate norming factor with the given number of generated trajectories



	map_trajectory

	Simulate trajectory of the electrons with a specified starting position.



	map_trajectory_verbose

	Simulate trajectory of the electrons with a specified starting position.



	map_wrapper

	Create normally distributed electron positions and run trajectory mapping



	map_wrapper_cy

	Create normally distributed electron positions and run trajectory mapping in Cython



	plot_distribution

	Plot a scatter plot of the (x,y) points with 2D histograms depicting axial distribution



	rnd_gauss_xy

	Generate a specified number of points according to a Gaussian distribution.



	rnd_super_gauss

	Generate a specified number of points according to a Super Gaussian distribution.



	save_passes

	Save passes to a text file or by pickling



	setParameters

	Initialise the instance and set all the necessary parameters






Attributes



	shape

	



	shape_abs

	







	
get_next_crossing(coords)

	Get next two crossing points and a flag showing if volume boundaries are met


	Parameters:

	coords – 



	Returns:

	










	
get_norm_factor(N=None)

	Calculate norming factor with the given number of generated trajectories


	Parameters:

	N – number of trajectories



	Returns:

	










	
map_trajectory(x0, y0)

	Simulate trajectory of the electrons with a specified starting position.


	Parameters:

	
	x0 – x-positions of the electrons


	y0 – y-positions of the electrons






	Returns:

	










	
map_trajectory_verbose(x0, y0)

	Simulate trajectory of the electrons with a specified starting position.
Version with step-by-step output to console.


	Parameters:

	
	x0 – x-positions of the electrons


	y0 – y-positions of the electrons






	Returns:

	










	
map_wrapper(y0, x0, N=0)

	Create normally distributed electron positions and run trajectory mapping


	Parameters:

	
	y0 – y-position of the beam, nm


	x0 – x-position of the beam, nm


	N – number of electrons to create






	Returns:

	










	
map_wrapper_cy(y0, x0, N=0)

	Create normally distributed electron positions and run trajectory mapping in Cython


	Parameters:

	
	y0 – y-position of the beam, nm


	x0 – x-position of the beam, nm


	N – number of electrons to create






	Returns:

	










	
plot_distribution(x, y, func=None)

	Plot a scatter plot of the (x,y) points with 2D histograms depicting axial distribution


	Parameters:

	
	x – array of x-coordinates


	y – array of y-coordinates


	func – 2D probability density function






	Returns:

	










	
rnd_gauss_xy(x0, y0, N)

	Generate a specified number of points according to a Gaussian distribution.
Standard deviation and order of the super gaussian are class properties.


	Parameters:

	
	x0 – mean along X-axis


	y0 – mean along Y-axis


	N – number of points to generate






	Returns:

	two arrays of N-length with x and y positions










	
rnd_super_gauss(x0, y0, N)

	Generate a specified number of points according to a Super Gaussian distribution.
Standard deviation and order of the super gaussian are class properties.


	Parameters:

	
	x0 – mean along X-axis


	y0 – mean along Y-axis


	N – number of points to generate






	Returns:

	two arrays of N-length with x and y positions










	
save_passes(fname, type)

	Save passes to a text file or by pickling


	Parameters:

	
	fname – name of the file


	type – saving type: accepts ‘pickle’ or ‘text’






	Returns:

	










	
setParameters(structure, params, stat=1000)

	Initialise the instance and set all the necessary parameters


	Parameters:

	
	structure – solid structure representation


	params – contains all input parameters for the simulation


	stat – number of simulated trajectories



















            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.etrajectory.Electron


	
class Electron(x, y, parent)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class representing a single electron with its properties and methods to define its scattering vector.

Methods



	check_boundaries

	Check if the given (z,y,x) position is inside the simulation chamber.



	get_direction

	



	get_next_point

	



	index_corr

	Corrects indices according to the direction if coordinates are on the cell wall






Attributes



	coordinates

	Current coordinates (z, y, x)



	coordinates_prev

	Previous coordinates (z, y, x)



	direction

	



	indices

	Gets indices of a cell in an array according to its position in the space







	
check_boundaries(z=0, y=0, x=0)

	Check if the given (z,y,x) position is inside the simulation chamber.
If bounds are crossed, return corrected position


	Parameters:

	
	z – 


	y – 


	x – 






	Returns:

	










	
property coordinates

	Current coordinates (z, y, x)


	Returns:

	tuple










	
property coordinates_prev

	Previous coordinates (z, y, x)


	Returns:

	tuple










	
index_corr()

	Corrects indices according to the direction if coordinates are on the cell wall


	Returns:

	










	
property indices

	Gets indices of a cell in an array according to its position in the space


	Returns:

	i(z), j(y), k(x)
















            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.etrajmap3d

Electron-matter interaction simulator

Functions



	process_trajectories

	Convert raw trajectories into a collection of segments






Classes



	ETrajMap3d

	Implements energy deposition and surface secondary electron flux calculation.









            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.etrajmap3d.process_trajectories


	
process_trajectories(points, energies, mask)

	Convert raw trajectories into a collection of segments


	Parameters:

	
	points – consequent scattering points


	energies – remaining energy at each point


	mask – marks segments that lie outside of solid






	Returns:

	an array of start- and end-points of segments, energy loss at segment












            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.etrajmap3d.ETrajMap3d


	
class ETrajMap3d

	Bases: MC_Sim_Base

Implements energy deposition and surface secondary electron flux calculation.

Create an empty ETrajMap3d instance

Methods



	extract_se_heat

	Calculate energy loss by scattered secondary electrons per cell.



	follow_segment

	Calculate total energy deposited by primary electrons per cell.



	generate_se

	Estimate surface secondary electron flux.



	joule_heating

	Get total energy loss from primary and secondary electrons peel



	map_follow

	Get surface secondary electron flux and volumetric heat source distribution



	prep_se_emission

	Subdivide trajectory segments and energy losses



	setParametrs

	Initialise the instance and set all the necessary parameters



	traverse_cells

	AABB Ray-Voxel traversal algorithm.






Attributes



	shape

	



	shape_abs

	







	
extract_se_heat()

	Calculate energy loss by scattered secondary electrons per cell.


	Returns:

	










	
follow_segment(points, dEs)

	Calculate total energy deposited by primary electrons per cell.


	Parameters:

	
	points – array of (z, y, x) points representing a trajectory from MC simulation


	dEs – list of energies losses between consecutive points. dEs[0] corresponds to a loss between p[0] and p[1]






	Returns:

	










	
generate_se()

	Estimate surface secondary electron flux.


	Returns:

	










	
joule_heating()

	Get total energy loss from primary and secondary electrons peel






	
map_follow(passes, heating=False)

	
	Get surface secondary electron flux and volumetric heat source distribution
	from primary electron trajectories.






	Parameters:

	
	passes – a collection of trajectories


	heating – True will calculate collective heat effect from PEs and SEs






	Returns:

	










	
prep_se_emission(points, dEs, ends)

	Subdivide trajectory segments and energy losses


	Parameters:

	
	points – segment start- and end-points


	dEs – energy loss


	ends – trajectory end positions, check comments






	Returns:

	










	
setParametrs(structure, params, segment_min_length=0.3)

	Initialise the instance and set all the necessary parameters


	Parameters:

	
	structure – solid structure representation


	params – contains all input parameters for the simulation


	segment_min_length – segment subdivision length













	
traverse_cells(p0, pn, direction, t, step_t)

	AABB Ray-Voxel traversal algorithm.
Gets coordinates, where ray crosses voxel walls


	Parameters:

	
	p0 – ray origin


	pn – ray endpoint


	direction – direction of the ray


	t – first t-value


	step_t – step of the t-value






	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.mc_base

Monte Carlo simulator utility module

Classes



	Element

	Represents a solid material.



	MC_Sim_Base

	









            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.mc_base.Element


	
class Element(name='noname', Z=1, A=1.0, rho=1.0, e=50, lambda_escape=1.0, mark=1)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents a solid material.
Contains properties necessary for electron beam-matter interaction.

Methods













            

          

      

      

    

  

    
      
          
            
  
febid.monte_carlo.mc_base.MC_Sim_Base


	
class MC_Sim_Base(*args)

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Methods






Attributes



	shape

	



	shape_abs

	













            

          

      

      

    

  

    
      
          
            
  
febid.simple_patterns

Stream-file reader and pattern generator

Functions



	analyze_pattern

	Parse stream-file and split it into stages



	generate_circle

	



	generate_line

	



	generate_pattern

	Generate a stream-file for a simple figure.



	generate_point

	



	generate_square

	



	open_stream_file

	Open stream file, convert to nm and define enclosing volume dimensions.









            

          

      

      

    

  

    
      
          
            
  
febid.simple_patterns.analyze_pattern


	
analyze_pattern(file, unit_pitch)

	Parse stream-file and split it into stages








            

          

      

      

    

  

    
      
          
            
  
febid.simple_patterns.generate_circle


	
generate_circle(loops, dwell_time, x, y, diameter, _, step=1)

	






            

          

      

      

    

  

    
      
          
            
  
febid.simple_patterns.generate_line


	
generate_line(loops, dwell_time, x, y, line, _, step=1)

	






            

          

      

      

    

  

    
      
          
            
  
febid.simple_patterns.generate_pattern


	
generate_pattern(pattern, loops, dwell_time, x, y, params, step=1)

	Generate a stream-file for a simple figure.


	Parameters:

	
	pattern – name of a shape: point, line, square, rectangle, circle


	loops – amount of passes


	dwell_time – time spent on each point, s


	x – center x position of the figure, nm


	y – center y position of the figure, nm


	params – figure parameters, nm;
(length) for line, (diameter) for circle, (edge length) for cube


	step – distance between each point, nm






	Returns:

	array(x positions[nm], y positions[nm], dwell time[s])












            

          

      

      

    

  

    
      
          
            
  
febid.simple_patterns.generate_point


	
generate_point(loops, dwell_time, x, y)

	






            

          

      

      

    

  

    
      
          
            
  
febid.simple_patterns.generate_square


	
generate_square(loops, dwell_time, x, y, side_a, side_b=None, step=1)

	






            

          

      

      

    

  

    
      
          
            
  
febid.simple_patterns.open_stream_file


	
open_stream_file(file=None, offset=200, collapse=False, unit_pitch=0.13)

	
	Open stream file, convert to nm and define enclosing volume dimensions.
	A valid stream-file should consist of 3 columns and start with ‘s16’ line.






	Parameters:

	
	file – path to the stream-file


	offset – determines a margin around the printing path


	collapse – if True, summ dwell time of consecutive instructions with identical coordinates






	Returns:

	normalized directives in nm and s, dimensions of the enclosing volume in nm












            

          

      

      

    

  

    
      
          
            
  
febid.start

Scripting template for running series of simulations

Functions



	atoi

	



	extr_number

	



	read_param

	Read a parameter value from a configuration file.



	scan_settings

	Launch a series of simulations by changing a single parameter



	scan_stream_files

	Launch a series of simulations using multiple patterning files



	start_default

	



	start_no_ui

	



	start_ui

	



	write_param

	Write a value to a parameter in a configuration file.









            

          

      

      

    

  

    
      
          
            
  
febid.start.atoi


	
atoi(text)

	






            

          

      

      

    

  

    
      
          
            
  
febid.start.extr_number


	
extr_number(text)

	






            

          

      

      

    

  

    
      
          
            
  
febid.start.read_param


	
read_param(file, param_name)

	Read a parameter value from a configuration file.


	Parameters:

	
	file – path to configuration file


	param_name – name of the parameter






	Returns:

	value of the parameter












            

          

      

      

    

  

    
      
          
            
  
febid.start.scan_settings


	
scan_settings(session_file, param_name, scan, base_name='')

	Launch a series of simulations by changing a single parameter


	Parameters:

	
	session_file – YAML file with session configuration


	param_name – the name of the parameter, refer to settings and precursor parameters


	scan – a collection of values to use in consequent runs


	base_name – a common name for simulation files






	Returns:

	












            

          

      

      

    

  

    
      
          
            
  
febid.start.scan_stream_files


	
scan_stream_files(session_file, directory)

	Launch a series of simulations using multiple patterning files

The files are named after the patterning file
:type session_file: 
:param session_file: YAML file with session configuration
:type directory: 
:param directory: folder with stream files
:return:








            

          

      

      

    

  

    
      
          
            
  
febid.start.start_default


	
start_default(config_f=None)

	






            

          

      

      

    

  

    
      
          
            
  
febid.start.start_no_ui


	
start_no_ui(config_f=None)

	






            

          

      

      

    

  

    
      
          
            
  
febid.start.start_ui


	
start_ui(config_f=None)

	






            

          

      

      

    

  

    
      
          
            
  
febid.start.write_param


	
write_param(file, param_name, val)

	Write a value to a parameter in a configuration file.


	Parameters:

	
	file – path to configuration file


	param_name – name of the parameter


	val – value to write






	Returns:
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Algorithms


Hausdorff distance

In the Monte Carlo module secondary electrons (SE) that drive both dissociation
and beam heating are divided into two groups after emission. SEs that are emitted in the surface vicinity
are considered contributing to the dissociation, while all others are scattered and contribute to the heating effect.
The main criteria for the division is distance to the surface: if the distance is shorter than the SE’s
inelastic mean free path (IMFP), it is added to the ‘dissociation’ group or to the ‘heating’ otherwise.


[image: _images/hausdorff_distance.png]

Hausdorff distance matrix [Lee2019]



In order to determine to which group an SE belongs, it’s emission point is superimposed with a distance or
Hausdorff distance matrix.
Each cell in the matrix is assigned a distance to the nearest surface cell based on the cell size (i.e. 2 nm).
In such manner surface vicinity can be evaluated in an effective manner, that requires only calculation of SE’s
position in the matrix and comparison to the integer array.

Taking into account that for a given simulation configuration the IMFP and the cell size are fixed,
the array can be converted to a boolean one, where 1 denotes distances less than IMFP and 0 larger than IMFP.
Such simplification reduces memory consumption and computational comparison cost.

The algorithm producing the initial integer matrix is based on a simple operation of adding unity to all cells
that have at least one non-zero neighbor (starting with unity at the surface). Every n-th iteration will populate
a new layer of cells denoting the n-th surface nearest neighbor.

As the surface evolves dynamically, it is necessary to update the Hausdorff distance matrix according to the new
surface profile. Performing aforementioned operations every time a new solid cell is added is computationally
expensive to perform on the whole array. Thus, it can be performed locally. By selecting a section of the matrix
with a newly deposited cell in the center, the Hausdorff distances can be updated locally. The random nature of
cell filling order updates the matrix evenly and keeps it consistent. Not only this approach reduces computational
time by orders of magnitude, but also sustains it at the same level regardless of the grid size.



[Lee2019]
Lee K.-I., Lee H.-T. et al., Simulation of dynamic growth rate of focused ion beam-induced deposition using Hausdorff distance, Sensors and Actuators A: Physical 2019, 286, 169-177
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Parameter approximations


Deposited volume

The result of dissociation process is the added deposited volume, that is proportional to to number of dissociated
precursor molecules. In the simulation each molecule is assumed to produce a certain volume of deposit.
A volume of the smallest deposit volume then can be derived from density and composition of the bulk deposit:

[image: \Delta V=\frac M{N_A\cdot\rho}]


	where:
	[image: M] is the molecular mass of the model molecule reflecting bulk composition [image: \left[\frac g mol\right]]

[image: N_A] is the Avogadro number

[image: \rho] is density of the deposit







Atomic number

Effective or average atomic number of a multi-component material can be estimated based on two criteria:


	
	Atom number density:
	[image: n_a=\frac{n_m\cdot N_A\cdot\rho}M]


	where:
	[image: n_m] is the number of atoms in the model molecule

[image: M] is the molecular mass of the model molecule reflecting bulk composition [image: \left[\frac g mol\right]]











	
	Atom number averaging:
	[image: \overline Z = \sqrt{\sum_{i=1}^{n_m} a_i\cdot Z_i^2}]









Both values have to be checked against those of elements in the periodic table to find the best matching element.



Residence time

The heating and temperature tracking serves for the definition of temperature dependent time at runtime.
The dependence is Arrhenius-like and is described by the following relation:

[image: \tau=\frac{1}{k_0}exp\left( \frac{E_a}{k_B T} \right)]


	where:
	[image: k_0] is the exponential prefactor representing desorption attempt frequency [Hz]

[image: E_a] is the adsorption energy [meV]

[image: k_b] is the Bolzman constant

[image: T] is temperature [K]







Diffusion





            

          

      

      

    

  

    
      
          
            
  
Simulation space


Space discretization:



Define the space:


	Substrate:
	Substrate serves as a support for the grown structure and indicates the base of the simulation cahmber.
Substrate thickness or height should be chosen based on three considerations:


	It must be thicker than secondary electron bean free path


	It must be at least 2 cells high regardless of cell size
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