

Welcome to FEBID Simulation documentation!

The package is virtual representation of the direct-write nanofabrication technique called
FEBID [https://www.beilstein-journals.org/bjnano/articles/3/70] driven by an electron beam that typically takes place
in a SEM [https://en.wikipedia.org/wiki/Scanning_electron_microscope]. The simulation takes in a handful of
parameters and allows prediction of the deposit shape expected from an experiment. It features a live visual process
representation, periodical save of the current state of the 3D deposited structure and
recording of the process parameters like time and growth rate. Additionally, the package features an electron beam - matter
simulator, that can be run separately using a previously saved 3D structure to reveal beam related details of the process.

The saved 3D structure files can then be interactively viewed or compiled into a animated series depicting the process.

The Getting started section will let you quickly install the package and run an example simulation.
A more detailed interface manual, input parameter files explanation and features list will give a full understanding
on how to use the simulation.

For more in-deep understanding of the simulation design and code details check the API section.

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Introduction

Simulation of the FEBID process written in Python.
FEBID stands for Focused Electron Beam Induced Deposition, a variation of a CVD (chemical vapor deposition) process.
It uses volatile organometallic molecules (precursor) as material and a controlled electron beam
to selectively deposit material on a substrate.

Simulation base features:

	Continuum model

	Enabled diffusion

	Enabled temperature effects

	Electron-matter interaction via Monte Carlo simulation

	No gas dynamics implications

Installation

The simulation requires Python 3.7 or later.

Package is available via PyPi: pip install febid

Alternatively, it can be installed directly from GitHub via pip, although that will require compilation of some modules:

pip install git+https://github.com/MrCheatak/FEBID_py

Tip

Linux user may need to manually install Tkinter, as it is not always shipped with the default installation of Python.

Running the first simulation

In order to run the first simulation, Parameters.yml and Me3PtCpMe.yml parameter files in the
Examples [https://github.com/MrCheatak/FEBID_py/tree/master/Examples] folder are needed.
As the installation finishes, run python -m febid, which will show the main control panel:

There are three main setup steps that are essential for the simulation: space, pattern and parameters of the
beam and deposition material. Further instructions will configure a simulation on a 200x200 nm substrate
with a stationary 5s exposure of a 30keV 0.15nA beam deposition using the Me3PtCpMe precursor.

	Space:
	Firstly, a simulation volume domain has to be created. The simplest case is a clean substrate.
Choose Parameters option and specify 200x200x200 nm
dimensions with 5 nm cell size and 10 nm substrate. This will define a cubic simulation domain divided into voxels
with 5 nm edge length. Finally, a 20 nm layer of substrate material (Au) is laid at the bottom.

	Pattern:
	Next, pattern has to be defined for the controlled beam. Choose Simple patterns and select Point from the drop-down
menu. This option will fix the beam at a point specified by X and Y parameters, set both of them to 100 to position
the beam at the center of the substrate. The time that the beam will spend at that point is defined by dwell time
and repeats parameters. Lets set a 5 s exposure by setting them to 1000 and 5000 correspondingly.
A beam is configured now to stay at the (100,100) point for 5 s.

	Beam and precursor:
	Finally, open Parameters.yml for Settings and Me3PtCpMe.yml for Precursor parameters. The first one
specifies the beam parameters and precursor flux, the second provides precursor material properties.

Lastly, uncheck all the saving options and enable Show the process to watch the growth in real
time and hit Start.

A new window is then shown with a scene containing the substrate. The scene can be rotated and zoomed to get a better
view angle.

Important

Besides the graphical representation, a console is will display simulation info. It is important to keep an eye on it as
the deposition progress, execution speed and warnings and errors, if any occur, are output to the console.

Manual

Contents:

	Interface
	Control panel:

	Saving simulation results:

	Viewing simulation results:

	Experimental settings
	Beam:

	Other:

	Precursor parameters file
	Precursor parameters list:

	Deposit parameters list:

	Setting up a series of simulations

Interface

Control panel:

Here is the list of all settings available on the control panel.

Load last session – initially unchecked. Checking it will create a session file at the location, from where the
Python command was executed. Lunching from the same location again will load settings used previously.
This file can be as well be manually edited to change the settings preset,
i.e for a series of simulation runs.

Simulation volume:

	VTK file – allows specifying a VTK-type file (.vtk) that contains a predefined 3D structure to be used in the simulation.

	Parameters – create a fresh simulation volume with specified dimensions and voxel(cell) size with a substrate at the bottom.

	Auto – to be used only when using a stream-file. The dimensions of the simulation volume will be defined automatically to encapsulate the printing path with a sufficient margin.

	Width, length, height – simulation volume dimensions, nm.

	Cell size – edge length of a cubic cell or voxel that is the simulation volume is divided into. The smallest volume fraction of the simulation volume

	Substrate height – the thickness of a substrate layer at the bottom of the simulation volume. By default, it has properties of gold. It should be a multiple of Cell size.

Volume dimensions have to be set only if Parameters is chosen. When VTK file is chosen, they are set automatically from the file, as well as Substrate height and Cell size.
For the Auto option, only Cell size and Substrate height have to be specified.

Pattern:

	Simple pattern – allows generation of a path with one of the available simple shapes:
Available shapes: point, line, square, rectangle and circle.

	x, y – parameters of the selected shape. Position for a point, length for a line, edge length for a square and rectangle, radius for a circle. Except for the point, all shapes are placed in the center. Keep in mind, that the printing path should be inside the borders of the simulation volume.

	Pitch – the shape contour is divided into discrete points, which a beam visits in a sequence. This parameter defines the distance between two consequent positions of the beam along it’s path.

	Dwell time – the amount of time the beam sits or dwells at a single position.

	Repeats – the number of times the pattern defined by shape, dwell time and pitch has to be repeated.

	Stream file – allows specifying a special stream-file, that defines a more complex printing path. It represents a sequence of beam positions with dwell times. This option requires Auto to be chosen in the Simulation volume section.

	HFW – Half Field Width sets the scale of the structure. Because pattern files are resolved in pixels, they have to be related to the actual distance units. This relation is provided by the magnification or HFW.

Beam and precursor:

	Settings – a YAML (.yml) file with beam parameters and precursor flux to be specified here.

	Precursor parameters – a YAML (.yml) file with precursor(printing material) and deponat(printed material) properties.

	Temperature tracking – check to enable calculation of the temperature profile and temperature dependency of the precursor coverage.

Warning

Corresponding precursor parameters have to be included in the parameter file in order for the temperature tracking to work.

Note

If a loaded 3D structure does not have temperature profile data, it will be added automatically.

Save file:

	Save simulation data – check to regularly save statistical data of the simulation including time passed, deposition time passed and volume filled. The save interval is specified in the next field.

	Save structure snapshots – check to regularly save the state of the deposition process. The save interval is specified in the next field.

	VTK file option:
	Read the volume with a structure from a .vtk file. The file can be a regular .vtk file with a structure in it
or it can be a file produced by the simulation (by checking Save structure snapshots). If an arbitrary .vtk file is
specified, it has to be a UniformGrid, have a cubic cell (equal spacings) and have a single cell array.

	Graphical:
	When ‘Show the process’ is checked to view the simulation process in real-time, a window with a 3D scene will open.
Refresh rate is set to 0.5 s, thus it may be slow to interact with.
The scene is interactive, meaning it can be zoomed by scrolling, rotated with a mouse, moved around (with Shift
pressed) and focused at the cursor by pressing ‘F’.
The coloring and the corresponding scale represents the concentration of the precursor at the surface.
Thus, the 3D object displayed is not the solid structure itself, but it’s whole surface, that follows the shape of
the solid 3D object.

Saving simulation results:

When any of the ‚Save…‘ options are checked a new folder for the current simulation is created.
The intervals of statistics records and snapshots saving refer to the deposition time.

Save simulation data creates an .xlsx Excel file and records simulation setup information and statistical data.
Simulation setup is recorded before the simulation start and includes Precursor/deposit properties,
Beam/precursor flux settings and Simulation volume attributes, which are saved on separate sheets.
Statistical data is then recorded repeatedly during the simulation and includes the following default columns:

	Precise time of record (real)

	Time passed (real), s

	Time passed (deposition/experiment), s

	Current lowest precursor coverage 1/nm 2

	Temperature, K

	Deposited volume, nm 3

	Growth rate

Note

The data collected can be extended via Statistics class by adding columns at the simulation initialization and then
providing data for timely records in the monitoring function.

Hint

While real time refers to the real-world time, simulation/experiment refers to the time defined by the beam pattern.

Save structure snapshots enables regular dumping of the current state of structure. The data is saved in .vtk format,
and includes 3D arrays that define:

	Grown structure

	Surface deposit

	Surface precursor coverage

	Temperature

	Surface cells

	Semi-surface cells

	Ghost cells

Additionally, current time, time passed, deposition time passed and beam position are saved.

The files saved via this option can be then viewed as 3D models by the included show_file.py and show_animation.py
scripts or in ParaView®.

Warning

3D structure file (.vtk) may reach 500 Mb for finer grids and, coupled with regular saving with short intervals,
may occupy significant disc space. If only the end-result is needed, input an interval that is larger than the
total deposition time.

Important

Currently, patterning information is not included in the saved simulation setup info and has to be managed manually.

Viewing simulation results:

There are three options to inspect a 3D structure deposited by FEBID simulation.

The first one is viewing a specific
snapshot with all the corresponding data layers (precursor coverage, temperature etc.).

python -m febid show_file

The second option is to view the process based on a series of structure snapshots. Unlike viewing a single file, only
one data layer can be ‘animated’.

python -m febid show_animation

Surface deposit, precursor coverage and temperature profile data are currently supported, it can be set up inside
the script.

The third option is to use Paraview® [https://www.paraview.org/download/].
Examples [https://github.com/MrCheatak/FEBID_py/tree/master/Examples] folder contains a process file, that has
all presets for each dataset included in the 3D structure file to render the same result as the show_file script.

Experimental settings

An example of a settings file can be found in the
Examples [https://github.com/MrCheatak/FEBID_py/tree/master/Examples] folder of the repository.

Beam:

Experiment beam settings:

	beam_energy – energy of the electron beam, keV

	beam_current – current of the electron beam, A

Modulation of the beam profile:

	gauss_dev – standard deviation of a Gaussian beam shape function in nm

	n – order of the Gaussian function (see super or higher order gaussian distribution)

Electron trajectory settings:

	minimum_energy – energy at which electron trajectory following concludes, keV

Other:

	precursor_flux – precursor flux at the surface, 1/(nm^2*s)

	substrate_element – material of the substrate, i.e. ‘Au’

	deposition_scaling – multiplier for deposited volume for artificial speed up of the simulation

	emission_fraction – fraction of the total energy lost by primary electrons that is converted to secondary electron emission

Precursor parameters file

An example of a precursor parameters file can be found in the
Examples [https://github.com/MrCheatak/FEBID_py/tree/master/Examples] folder of the repository.

Precursor parameters list:

Base parameters:

	name – a common name of the selected precursor

	formula - a chemical formula of the precursor ,i,e ‘Me3PtCpMe’

	molar_mass_precursor – molecular mass of the precursor molecule, g/mol

	max_density - maximum site density of the precursor, 1/nm^2

	dissociated_volume – deposited material volume resulting from dissociation of s single molecule, nm^3

	sticking_coefficient – a probability that a precursor molecule adheres to the surface upon collision

	P_vap: precursor vapor pressure in the chamber, Pa

Dissociation:

	cross_section – precursor molecule integral dissociation cross-section, nm^2

Diffusion:

	diffusion_coefficient – surface diffusion coefficient , nm^2/s

	diffusion_activation_energy* – activation energy of the diffusion in its Arrhenius equation, eV

	diffusion_prefactor* – prefactor in diffusion Arrhenius equation, nm^2/s

Desorption:

	residence_time – a mean time a precursor molecule stays on the surface, µs

	adsorption_activation_energy* – activation energy of the adsorption in the residence time Arrhenius equation, eV

	desorption_attempt_frequency* – a frequency, at which a molecule attempts to desorb from the surface, Hz

Deposit parameters list:

	deposit – chemical formula reflecting resulting deposit composition

	molar_mass_deposit – molecular mass of the given formula, g/mol

	SE_emission_activation_energy – energy required to emit a secondary electron, eV

	SE_mean_free_path – secondary electron mean free path nm

	average_element_number – average or effective atomic number of the given formula

	average_element_mol_mass – average molecular mass of the given formula g/mol

	average_density – deposit mass density, g/cm^3

	thermal_conductivity – thermal conductivity of the bulk deposit, W/nm/K

* – parameters required for temperature tracking

Setting up a series of simulations

Optimisation of pattern files, simulation input parameters or simulation of several structures may require
running a significant number of simulations. The package offers some simple automation features for such tasks.
Setting up a simulation series requires composing a Python script.

The first feature allows executing a sequence of simulations arising from consequently changing a single parameter.
A series of such simulations is regarded as a scan. Such scan can be carried out on any parameter from
the Precursor or Settings file.

Initially, a session configuration file has to be specified.
This file, along settings and precursor parameters files specified in it, is to be modified
and then used to run a simulation. This routine is repeated until the desired parameter
has taken a given number of values.
The routine only changes a single parameter. All other parameters have to be preset forehand.
session_file = '/home/kuprava/simulations/last_session.yml'

The first parameter change or scan modifies the Gaussian deviation parameter of the beam.
The file that will be modified in this case is the settings file.
Set up a folder (it will be created automatically) for simulation save files
directory = '/home/kuprava/simulations/gauss_dev_scan/'
write_param(session_file, 'save_directory', directory)
Specify parameter name
param = 'gauss_dev'
Specify values that the parameter will take during consequent simulations
vals = [2, 3, 4, 5, 6, 7, 8]
Launch the scan
scan_settings(session_file, param, vals, 'hs')
Files that are saved during the simulation are named after the specified common name (here i.e. 'hs')
and the parameter name.``

It is also possible to run a 2D scan, meaning another parameter is scanned for each value of the first parameter.

The second option is to run simulations by using a collection of pattern files. This mode requires that all the
desired pattern files are collected in a single folder, that has to be provided to the script.

Again, specify a desired location for simulation save files
directory = '/home/kuprava/simulations/longs/'
Optionally, an initial structure can be specified. This will 'continue' deposition
onto a structure obtained in one of the earlier simulations.
It can be used i.e. when all planned structures share a same initial feature such as a pillar.
Keep in mind that it can be used only for patterning files with the same patterning area.
To that, the patterning area must correspond to one that is defined by the simulation for the current
pattern including margins.
initial_structure = '/home/kuprava/simulations/hockey_stick_therm_050_5_01_15:12:31.vtk'
write_param(session_file, 'structure_source', 'vtk')
write_param(session_file, 'vtk_filename', initial_structure)
write_param(session_file, 'save_directory', directory)
Specifying a folder with patterning files
stream_files = '/home/kuprava/simulations/steam_files_long_s'
Launching the series
scan_stream_files(session_file, stream_files)

Note

Scanning only modifies the selected parameter(s). Thus, all other parameters as well as saving options and output
directory have to be preset.

How it works

This section will explain how various modules work, what solutions are applied and how some of
the input parameters are estimated

Contents:

	Monte Carlo module
	1. Primary electron scattering

	2. Electron trajectory discretisation

	3. Surface electron flux estimation

	4. Beam heating power estimation

	Diffusion
	Ghost cells

	Numerical solution

	Thermal effects
	Temperature dependence

	Heat equation

Monte Carlo module

The Monte Carlo module realises electron beam – matter interaction.
There are two results, that are eventually transferred to the deposition module.
The first one is secondary electron flux profile, the second is distribution of the volumetric heat sources
in the solid or beam heating power.

There are a total of 5 stages that the simulation consists of:

	Primary electron scattering

	Secondary electron emission

	Surface electron flux estimation

	Primary electron energy deposition

	Secondary electron energy deposition

1. Primary electron scattering

[image: _images/gauss_distr.png]

A total of 20000 generated electrons
on a 50x50 grid with 3.8 standard
deviation. Histograms reflect equatorial
distributions.

At this step, scattering of the primary electrons is simulated, resulting in a collection of electron trajectories
coupled with energy losses along the trajectory.

Initially, a number of electrons are generated around the beam position according to the Gaussian distribution:

The scattering process occurs in a simulation volume domain of a predefined material.

Each electron initially has the energy of the beam [image: E_0], that is continuously lost as the electron propagates
through the solid. The trajectory of an electron consists of a number of consequent scattering points, that are
characterised by the electron position and energy. Together, a number of trajectories represent the spacial scattering
of the emitted electrons.

At each scattering point, based on the electron energy, the scattering angle and
the free path length are calculated based on random values from a normal distribution. After this, the trajectory
is extended by an additional segment. The trajectory proceeds likewise until an electron reaches a cut-off energy
or escapes the simulation volume domain:

[image: _images/grid.png]

Simulation volume domain subdivided into cubic cells.

[image: _images/PEs.png]

Two electron trajectories in the simulation volume. Coloring corresponds to electron energy.

2. Electron trajectory discretisation

[image: _images/SEs.png]

Red lines are SE vectors in the vicinity of the surface.

Here, the generated trajectories are subdivided and secondary electrons are emitted based on the energy loss on those
subsegments.

Firstly, the trajectories of primary electrons are finely (less then a nm) subdivided into subsegments. Each subsegment
corresponds to the energy lost by an electron at this distance [image: E]. Based on that energy, the number of emitted
secondary electrons is calculated. Electrons are emitted from from the beginning of the subsegment and the emission
direction is random. The free path that secondary electrons may travel is fixed for a given material, thus all the
emission vectors as assigned the same length. The result at this step is a collection of secondary electron vectors,
stemming from primary electron trajectories.

At this stage, those vectors are as well filtered. All SEs that cannot reach the surface due to being buried too deep
in the solid are separated from those that have their emission sources in the vicinity of the surface.

3. Surface electron flux estimation

[image: _images/se_flux.png]

Surface SE flux, lighter color corresponds to higher flux rate.

Now, the secondary electron vectors are converted into surface secondary electron flux.

Each vector may or may not reach the surface depending on its position and direction. To test each vector for crossing
with the surface, they are followed along and each cell that they traverse through is checked. If a traversed cell
appears to be a surface cell, the number of emitted secondary electron that the vector ‘carries’ is added to that
surface cell. Performing such routine on all the vectors results in accumulation of secondary electrons in the surface
cells and yields a surface secondary electron flux.

4. Beam heating power estimation

[image: _images/dep_energy.png]

Beam heating power distributed per cell, the higher the power the more red is the cell.

Finally, the power of the beam heating is calculated at this step.

The energy of primary electrons is spent as well on Joule heating. Each electron, as it travels through the solid,
deposits a fraction of the lost energy into the solid, resulting in heating of the solid medium.
Due to the fact that the solid is discretised into cubic cells, the heating power is a collective of cells traversed
by primary electrons with energy deposited in them or a collection of volumetric heat sources.

Each trajectory is followed along to determine the distance traveled inside the cells they traverse. Traversed cells
are then added the energy lost by that electron proportional to that distance. This results in a spatially resolved
volumetric heat sources distribution, that follow electron trajectories.

In the end, the resulting distribution is added all the secondary electrons, that were buried too deep. Those electrons
are considered scattered and contribute to the heating process.

	Secondary electron emission energy ([image: \varepsilon]):
	It is the energy required to launch a cascade of secondary electrons.
While these values are tabulated for most of the elements in [Lin2005], compound energies shall be
averaged volumetrically, i.e. AB compound(amorphous):

[image: \overline{\varepsilon}=V_A\cdot\varepsilon_A+V_B\cdot\varepsilon_B],

	where
	[image: V_A] and [image: V_B] are volume fractions of the phases

[image: \varepsilon_A] and [image: \varepsilon_B] are emission activation energies

[Lin2005]
Lin Y., Joy D., A new examination of secondary electron yield data, Surf. Interface Anal. 2005, 37, 895–900

Diffusion

Surface diffusion plays an important role in precursor coverage replenishment at the beam interaction region (BIR).

[image: _images/diffusive_flow.png]

Diffusive flow

In the discretised simulation volume, diffusion occurs on a monolayer of cells that separates solid and empty cell
domains. It is the same cell layer that contains information about surface precursor coverage.

Solution of the diffusion equation is a subroutine of the reaction-diffusion equation solution. Each time the solution
occurs, it outputs a profile of local precursor changes induced by the diffusion process and then added to the precursor
coverage profile.

Ghost cells

[image: _images/ghost_cells.png]
In order to enable diffusion exclusively along the surface a so-called ‘ghost cell’ method is used.
The thin layer of surface cells is ultimately contained between the void and solid cells.
The solid and void cells that neighbor a surface cell are marked as ghost cells, encapsulating the whole surface.
During the application of the stencil operator, the ghost cells mimic the value in the current cell. This artificially
creates a condition of zero concentration difference and consequently zero diffusive flux.

Diffusion is described via a parabolic PDE equation and thus
requires a special numerical solution.

Characteristic time of the diffusion makes it feasible to use the simplest approach – the FTCS scheme.

Numerical solution

The diffusion equation:

[image: \frac{\partial T}{\partial t}=D\nabla^2T],

	where:
	[image: D] is surface diffusion coefficient [image: \left[\frac{nm^2}{s} \right]]

[image: T] is temperature [K]

which is resolved in 3D space:

[image: \frac{\partial T}{\partial t}= D\left(\frac{\partial^2T}{\partial x^2}+\frac{\partial^2T}{\partial y^2}+\frac{\partial^2T}{\partial z^2}\right)]

The solution occurs in a discretized volume domain, where the finest spacial step
along each axis is [image: \Delta x,\Delta y,\Delta z]. Temperature in each cell is addressed by it’s index along each
axis i,j,k. The FTCS scheme can then be described as follows:

[image: \frac{\partial T}{\partial t}=D\left(\frac{T_{i-1,j,k}-2T_{i,j,k}+T_{i+1,j,k}}{\Delta x^2}+ \frac{T_{i,j-1,k}-2T_{i,j,k}+T_{i,j+1,k}}{\Delta y^2}+ \frac{T_{i,j,k-1}-2T_{i,j,k}+T_{i,j,k+1}}{\Delta z^2}\right)]

Partial derivatives are averaged from the current and neighboring cells along a single axis.

For a case with a cubic cell, where [image: \Delta x=\Delta y=\Delta z], the expression can be simplified:

[image: \partial T=D\partial t\left(\frac{T_{i-1,j,k}+T_{i+1,j,k}+T_{i,j-1,k} +T_{i,j+1,k}+T_{i,j,k-1}+T_{i,j,k+1}-6T_{i,j,k}}{\Delta x^2}\right)]

	where:
	[image: D] is surface diffusion coefficient [image: \left[\frac{nm^2}{s} \right]]

[image: T_{i,j,k}] is temperature in the given cell [K]

[image: \partial t] is the time step or time resolution, [s]

Using the derived expression, the state of the system at the next time step can be derived from the current state.

[image: _images/stencil.png]

3D Stencil operator

From analysing the expression, it is evident that it sums every neighbor and subtracts the value of the central cell.
Such operation, that is applied to all cells in the same manner is called a stencil.

The Fourier stability criterion for the FTCS scheme is:

[image: F=\frac{2D\Delta t}{\Delta x^2}],

for 3D space [image: F<\frac{1}{6}] yielding maximum stable time step:

[image: \Delta t=\frac{\Delta x^2}{6D}],

while semi-implicit Crank-Nicholson and implicit Euler methods are unconditionally stable.

Nevertheless Crank-Nicholson is unconditionally stable, meaning it works for any time step, it may suffer
oscillations. At the same time, implicit Euler is immune to oscillations, but has only 1st-order accuracy in time.

Thermal effects

This page covers the model of beam heating influence on the deposit shape
and presents utilised solution for the heat equation.

Temperature dependence

The influence of the beam heating effect through temperature increase is multifold.

[image: _images/temperature_influence_diagram.png]
Initially, the heating power of the beam [image: q] is generated by the Monte Carlo module.

After that, a temperature profile is derived based on [image: q] and thermal conductivity of the deposit [image: k]

The temperature profile is then used to calculate surface profiles of residence time and diffusion coefficient.

Finally, those profiles are used for the calculation of the precursor coverage profile. Precursor coverage then
directly affects the amount of the deposited material.

Heat equation

Both heat distribution and diffusion are described via a parabolic PDE equation and thus
require a numerical solution.

Although, the processes are similar in nature, they occur at characteristic time steps differing by orders of magnitude.
This fact implies usage of different numerical solution for th heat transfer problem.

In the actual version of the package, the default for heat transfer is SOR.

The heat equation:

[image: c_p\rho\frac{\partial T}{\partial t}=k\nabla^2T+q],

which is resolved in 3D space:

[image: c_p\rho\frac{\partial T}{\partial t}= k\left(\frac{\partial^2T}{\partial x^2}+\frac{\partial^2T}{\partial y^2}+\frac{\partial^2T}{\partial z^2}\right)+q]

	where:
	[image: c_p] is the heat capacity of the solid medium [image: \left[\frac{J}{kg\cdot K} \right]]

[image: \rho] is the density [image: \left[\frac{kg}{nm^3} \right]]

[image: k] is thermal conductance [image: \left[\frac{W}{nm\cdot K} \right]]

[image: q] is the heating source originating from electron beam heating [image: \left[\frac{J}{nm^3} \right]]

[image: T] is temperature [K]

Due to the fact, that heat transfer characteristic time step is orders of magnitude shorter than one of mass transport
(diffusion), the solution of heat equation requires an accordingly shorter time step. Such fine time discretization
would make the simulation orders of magnitude slower.

Although, the same feature of the heat transfer means that evolution of an equilibrium or steady state occurs
almost instantly [Mutunga2019]. It means that time discretization is neglected and the problem simplifies to a calculation
of a steady state:

[image: k\nabla^2T=-q]

The problem of deriving a steady state is called a relaxation problem and is solved by a family of relaxation methods.
Here it is solved via a Simultaeous Over-Relaxation (SOR) method. Generally, it represents an FTCS scheme, ultimately
applied with the maximum stable time step. The main prerequisition for the SOR method is convergence of the solution.
The convergence is evaluated based on a norm of the difference between current and previous iterations. When the norm
diminishes below a certain value that is called solution accuracy the convergence is reached.

Due to the slow rise of temperature caused by beam heating, a steady state profile can be derived
at a significantly lower rate than the diffusion equation is solved.

Effectively, re-calculation of the steady state temperature profile is necessary approximately 10 times per deposition
time second for the PtC deposit.

[Mutunga2019]
Mutunga E., Winkler R., Sattelkow J. et al., Impact of Electron-Beam Heating during 3D Nanoprinting, ACS Nano 2019, 13, 5198-5213

febid

FEBID Simulator package

	febid.Process

	Deposition process code

	febid.Statistics

	Module for continuous process data recording

	febid.Structure

	Main internal data framework

	febid.diffusion

	Diffusion module Solution for diffusion equation via FTCS method

	febid.febid_core

	Control core of the simulation

	febid.heat_transfer

	Heat transfer module

	febid.libraries

	Extension modules.

	febid.monte_carlo

	Monte Carlo electron beam – matter interaction simulation subpackage

	febid.simple_patterns

	Stream-file reader and pattern generator

	febid.start

	Scripting template for running series of simulations

febid.Process

Deposition process code

The Process class implements the methods necessary to support the deposition process.

Functions

	restrict

	Prevent simultaneous call of the decorated methods

Classes

	Process

	Class representing the core deposition process.

febid.Process.restrict

	
restrict(func)

	Prevent simultaneous call of the decorated methods

febid.Process.Process

	
class Process(structure, equation_values, timings, deposition_scaling=1, temp_tracking=True, name=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class representing the core deposition process.
It contains all necessary arrays, variables, parameters and methods to construct a continuous deposition process.

Methods

	check_cells_filled

	Check if any deposit cells are fully filled

	deposition

	Calculate an increment of a deposited volume for all irradiated cells over a time step

	diffusion_coefficient

	Calculate surface diffusion coefficient for every surface cell.

	diffusion_coefficient_expression

	Calculate surface diffusion coefficient at a specified temperature.

	equilibrate

	Bring precursor coverage to a steady state with a given accuracy

	get_dt

	

	heat_transfer

	Define heating effect on the process

	precursor_density

	Calculate an increment of the precursor density for every surface cell

	residence_time

	Calculate residence time for every surface cell.

	residence_time_expression

	Calculate residence time at the given temperature :type temp: :param temp: temperature, K :return:

	update_helper_arrays

	Define new views to data arrays, create axillary indexes and flatten beam_matrix array

	update_surface

	Updates all data arrays after a cell is filled.

	view_dt

	

Attributes

	deposited_vol

	

	kd

	

	kr

	

	max_temperature

	

	nd

	Calculate depleted precursor coverage

	nr

	Calculate replenished precursor coverage

	precursor_min

	

	
check_cells_filled()

	Check if any deposit cells are fully filled

	Returns:

	bool

	
deposition()

	Calculate an increment of a deposited volume for all irradiated cells over a time step

	Returns:

	

	
diffusion_coefficient()

	Calculate surface diffusion coefficient for every surface cell.

	Returns:

	

	
diffusion_coefficient_expression(temp=294)

	Calculate surface diffusion coefficient at a specified temperature.

	Parameters:

	temp – temperature, K

	Returns:

	

	
equilibrate(eps=0.0001, max_it=10000)

	Bring precursor coverage to a steady state with a given accuracy

It is advised to run this method after updating the surface in order to determine a more accurate precursor
density value for newly acquired cells

	Parameters:

	eps – desired accuracy

	
heat_transfer(heating)

	Define heating effect on the process

	Parameters:

	heating – volumetric heat sources distribution

	Returns:

	

	
property nd

	Calculate depleted precursor coverage

	Returns:

	

	
property nr

	Calculate replenished precursor coverage

	Returns:

	

	
precursor_density()

	Calculate an increment of the precursor density for every surface cell

	Returns:

	

	
residence_time()

	Calculate residence time for every surface cell.

	Returns:

	

	
residence_time_expression(temp=294)

	Calculate residence time at the given temperature
:type temp:
:param temp: temperature, K
:return:

	
update_helper_arrays()

	Define new views to data arrays, create axillary indexes and flatten beam_matrix array

	Returns:

	

	
update_surface()

	Updates all data arrays after a cell is filled.

	Returns:

	

febid.Statistics

Module for continuous process data recording

Classes

	Statistics

	Class implementing statistics gathering and saving(to excel).

febid.Statistics.Statistics

	
class Statistics(filename='run_id713422')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class implementing statistics gathering and saving(to excel).

Report contains following columns:

Time, Time passed, Simulation time, Simulation speed, N of cells(filled), Volume, Min.precursor coverage, Growth rate

It is possible to automatically include graphs into Excel files
Additionally, initial simulation parameters are added to 3 separate sheets

Methods

	add_plot

	

	add_plots

	Add scatter plots to the Excel-file.

	add_stat

	Add a new statistic to the table.

	append

	Add a new record to the statistics.

	get_growth_rate

	

	get_params

	Collect initial parameters and save them to Excel-file

	plot

	['Time', 'Sim.time', 'Sim.speed', 'Volume', Min.precursor coverage', 'Growth rate'] :type x: :param x: :type y: :param y: :return:

	save_to_file

	Write collected statistics to an Excel file.

Attributes

	shape

	

	
add_plots(*args, position='J1')

	Add scatter plots to the Excel-file.

Args is a list of tuples of column names to be plotted: [(x1, y1), (x2, y2)]
Position is a list of cells where to put the graphs (by the upper-left corner)

	
add_stat(name, first_value=0)

	Add a new statistic to the table.
It is recorded in monitoring function and how it is collected is up to the user.

	
append(*stats)

	Add a new record to the statistics.
The number of stats must include manually added ones

	Parameters:

	stats – current simulation time, current number of deposited cells and manually added columns

	Returns:

	

	
get_params(arg, name)

	Collect initial parameters and save them to Excel-file

	Parameters:

	
	arg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – a name for the provided parameters

	Returns:

	

	
plot(x, y)

	[‘Time’, ‘Sim.time’, ‘Sim.speed’, ‘Volume’, Min.precursor coverage’, ‘Growth rate’]
:type x:
:param x:
:type y:
:param y:
:return:

	
save_to_file(force=False)

	Write collected statistics to an Excel file.
The gathered statistics are appended to the end of the table every couple of seconds
Caution: the session keeps the file open until it finishes.

febid.Structure

Main internal data framework

Classes

	Structure

	Represents the discretized space of the simulation volume and keeps the current state of the structure.

febid.Structure.Structure

	
class Structure(precursor_empty=0.0, precursor_full=1.0, deposit_empty=0.0, deposit_full_substrate=-2.0, deposit_full_deponat=-1.0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents the discretized space of the simulation volume and keeps the current state of the structure.

Set values to mark empty and full cells for precursor and deposit arrays.

	Parameters:

	
	precursor_empty –

	precursor_full –

	deposit_empty –

	deposit_full_substrate –

	deposit_full_deponat –

Methods

	create_from_parameters

	Frame initializer.

	define_ghosts

	Determining ghost shell wrapping the surface This is crucial for the diffusion to work if rolling method is used.

	define_semi_surface

	Determining semi-surface of the initial structure

	define_surface

	Determining surface of the initial structure

	define_surface_neighbors

	Find solid cells that are n-closest neighbors to the surface cells.

	fill_surface

	Covers surface of the deposit with initial precursor density

	flush_structure

	Resets and prepares initial state of the grid.

	load_from_vtk

	Frame initializer.

	max_z

	Get the height of the structure.

	resize_structure

	Resize the data framework.

	save_to_vtk

	

	update_shape

	Read the shape of the data and set shape and absolute shape of the class.

	
create_from_parameters(cell_dim=5, width=50, length=50, height=100, substrate_height=4, nr=0)

	Frame initializer. Create a discretized simulation volume framework from parameters.

	Parameters:

	
	cell_dim – size of a cell, nm

	width – width of the simulation chamber (along X-axis), number of cells

	length – length of the simulation chamber (along Y-axis), number of cells

	height – height of the simulation chamber (along Z-axis), number of cells

	substrate_height – thickness of the substrate along Z-axis, number of cells

	nr – initial precursor density, normalized

	Returns:

	

	
define_ghosts()

	Determining ghost shell wrapping the surface
This is crucial for the diffusion to work if rolling method is used.

	Returns:

	

	
define_semi_surface()

	Determining semi-surface of the initial structure

Semi-surface cell is a concept that enables diffusion on the steps of the structure.
These cells take part neither in the deposition process, nor in adsorption/desorption.

If semi-surface cell turns into a regular surface cell, the precursor density in it is preserved.
:return:

	
define_surface()

	Determining surface of the initial structure

	Returns:

	

	
define_surface_neighbors(n=0, deposit=None, surface=None, neighbors=None)

	Find solid cells that are n-closest neighbors to the surface cells.
If deposit, surface amd neighbors are provided, nearest neighbors are defined for them.

	Parameters:

	n – order of nearest neighbor, if 0, then index all the solid cells

	Returns:

	

	
fill_surface(nr)

	Covers surface of the deposit with initial precursor density

	Parameters:

	nr (float [https://docs.python.org/3/library/functions.html#float]) – initial precursor density

	Returns:

	

	
flush_structure()

	Resets and prepares initial state of the grid.

	Parameters:

	
	substrate – 3D precursor density array

	deposit – 3D deposit array

	init_density – initial precursor density on the surface

	init_deposit – initial deposit on the surface, can be a 2D array with the same size as deposit array along 0 and 1 dimensions

	volume_prefill – initial deposit in the volume, can be a predefined structure in an 3D array same size as deposit array (constant value is virtual and used for code development)

	Returns:

	

	
load_from_vtk(vtk_obj, add_substrate=4)

	Frame initializer. Load structure from a .vtk file.

A vtk object can either represent only a single solid structure array or a result of a deposition process
with the full set of arrays.

Important requirement: vtk data must be a UniformGrid with ‘spacing’ attribute.

	Parameters:

	
	vtk_obj (DataSet) – a vtk object from file

	add_substrate – if a value is specified, a substrate with such height will be created for simple vtk files. 0 or False otherwise. If the value is not a multiple of the ‘spacing’ attribute, it will be rounded down.

	
max_z()

	Get the height of the structure.
:return: 0-axis index of the highest cell

	
resize_structure(delta_z=0, delta_y=0, delta_x=0)

	Resize the data framework. The specified lengths are attached along the axes.

If any of the data is referenced, only a warning is shown and data is resized anyway.

Changing dimensions along y and x axes should be done mindful, because if these require extension
in the negative direction, that data has to be centered after the resizing.

	Parameters:

	
	delta_z – increment from the z-axis, nm

	delta_y – increment for the y-axis, nm

	delta_x – increment fro the x-axis, nm

	Returns:

	

	
update_shape()

	Read the shape of the data and set shape and absolute shape of the class.
:return:

febid.diffusion

Diffusion module
Solution for diffusion equation via FTCS method

Functions

	diffusion_ftcs

	Calculate diffusion term for the surface cells using stencil approach

	get_diffusion_stability_time

	Get max stable time step for FTCS solution.

	laplace_term_stencil

	Apply stencil operator to the selected cells in the grid.

	prepare_surface_index

	Get a multiindex from the surface array.

	stencil_debug

	

febid.diffusion.diffusion_ftcs

	
diffusion_ftcs(grid, surface, D, dt, cell_dim, surface_index=None, flat=True, add=0)

	Calculate diffusion term for the surface cells using stencil approach

Nevertheless the ‘surface_index’ is an optional argument,
it is highly recommended to handle index from the caller function

	Parameters:

	
	grid – 3D precursor density array, normalized

	surface – 3D boolean surface array

	D – diffusion coefficient, nm^2/s

	dt – time interval over which diffusion term is calculated, s

	cell_dim – grid space step, nm

	surface_index – a tuple of indices of surface cells for the 3 dimensions

	flat – if True, returns a flat array of surface cells. Otherwise, returns a 3d array with the same shape as grid.

	add – Runge-Kutta intermediate member

	Returns:

	3d or 1d ndarray

febid.diffusion.get_diffusion_stability_time

	
get_diffusion_stability_time(D, dx)

	Get max stable time step for FTCS solution.

	Parameters:

	
	D – diffusion coefficient, nm/nm^2

	dx – grid spacing, nm

	Returns:

	time step, s

febid.diffusion.laplace_term_stencil

	
laplace_term_stencil(grid, surface_index)

	Apply stencil operator to the selected cells in the grid.

	Parameters:

	
	grid – operated grid

	surface_index – selected cell index [z, y, x]

	Returns:

	

febid.diffusion.prepare_surface_index

	
prepare_surface_index(surface)

	Get a multiindex from the surface array.

	Parameters:

	surface (ndarray) – boolean array defining surface cells position in space

	Returns:

	tuple of 1d ndarrays

febid.diffusion.stencil_debug

	
stencil_debug(grid_out, grid, z_index, y_index, x_index)

	

febid.febid_core

Control core of the simulation

Functions

	buffer_constants

	Calculate necessary constants and prepare parameters for modules

	dump_structure

	

	initialize_framework

	Open simulation configuration files and prepare data framework

	monitoring

	A daemon process function to manage statistics gathering and graphics update.

	print_all

	Main event loop, that iterates through consequent points in a stream-file.

	print_step

	Sub-loop, that iterates through the dwell time by a time step

	run_febid

	Create necessary objects and start the FEBID process.

	run_febid_interface

	

	update_graphical

	Update the visual representation of the current process state

febid.febid_core.buffer_constants

	
buffer_constants(precursor, settings, cell_dimension)

	Calculate necessary constants and prepare parameters for modules

	Parameters:

	
	precursor (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – precursor properties

	settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – simulation conditions

	cell_dimension (int [https://docs.python.org/3/library/functions.html#int]) – side length of a square cell, nm

	Returns:

	

febid.febid_core.dump_structure

	
dump_structure(structure, sim_t=None, t=None, beam_position=None, filename='FEBID_result')

	

febid.febid_core.initialize_framework

	
initialize_framework(from_file=False, precursor=None, settings=None, sim_params=None, vtk_file=None, geom_params=None)

	
Open simulation configuration files and prepare data framework

	Parameters:

	
	from_file – True to load structure from vtk file

	precursor – path to a file with precursor properties

	settings – path to a file with beam parameters and settings

	sim_params – path to a file with simulation volume parameters

	vtk_file – if from_file is True, path to a vtk file to get structure from

	geom_params – a list of predetermined simulation volume parameters

	Returns:

	

febid.febid_core.monitoring

	
monitoring(pr, stats=None, location=None, stats_rate=60, dump_rate=60, render=False, frame_rate=1, refresh_rate=0.5, displayed_data='precursor')

	A daemon process function to manage statistics gathering and graphics update.

	Parameters:

	
	pr (Process) – object of the core deposition process

	stats (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Statistics]) – object for gathering monitoring data

	location – file saving directory

	stats_rate – statistics recording interval in seconds, None disables statistics recording

	dump_rate – dumping interval in seconds, None disables structure dumping

	render – True will enable graphical monitoring of the process

	frame_rate – redrawing delay

	refresh_rate – sleep time

	Returns:

	

febid.febid_core.print_all

	
print_all(path, process_obj, sim)

	Main event loop, that iterates through consequent points in a stream-file.

	Parameters:

	
	path – patterning path from a stream file

	process_obj – Process class instance

	sim – Monte Carlo simulation object

	Returns:

	

febid.febid_core.print_step

	
print_step(y, x, dwell_time, pr, sim, t)

	Sub-loop, that iterates through the dwell time by a time step

	Parameters:

	
	y – spot y-coordinate

	x – spot x-coordinate

	dwell_time – time of the exposure

	pr (Process) – Process object

	sim – MC simulation object

	t – tqdm progress bar

	Returns:

	

febid.febid_core.run_febid

	
run_febid(structure, precursor_params, settings, sim_params, path, temperature_tracking, gather_stats=False, monitor_kwargs=None)

	
Create necessary objects and start the FEBID process.

	Parameters:

	
	structure – structure object

	precursor_params – precursor properties

	settings – beam and precursor flux settings

	sim_params – simulation volume properties

	path – printing path

	gather_stats – True enables statistics gathering

	monitor_kwargs – settings for the monitoring function

	Returns:

	

febid.febid_core.run_febid_interface

	
run_febid_interface(structure, precursor_params, settings, sim_params, path, temperature_tracking, saving_params, rendering)

	

febid.febid_core.update_graphical

	
update_graphical(rn, pr, time_spent, displayed_data='precursor', update=True)

	Update the visual representation of the current process state

	Parameters:

	
	rn (Render) – visual scene object

	pr (Process) – process object

	time_step –

	time_spent –

	Returns:

	

febid.heat_transfer

Heat transfer module

Functions

	fit_exponential

	Fit data to an exponential equation y = a*exp(b*x)

	fragmentise

	Collect columns along each axis that do not contain zero cells

	get_heat_transfer_stability_time

	Get the largest stable time step for the FTCS scheme.

	heat_transfer_BE

	Calculate temperature distribution after the specified time step by solving the parabollic heat equation.

	heat_transfer_steady_sor

	Find steady-state solution to the heat equation with the given accuracy

	prepare_solid_index

	

	subdivide_list

	Extract start and end indexes of the non-zero sections in the array.

	temperature_stencil

	Calculates diffusion term for the surface cells using stencil operator

febid.heat_transfer.fit_exponential

	
fit_exponential(x0, y0)

	Fit data to an exponential equation y = a*exp(b*x)

	Parameters:

	
	x0 – x coordinates

	y0 – y coordinates

	Returns:

	ln(a), b

febid.heat_transfer.fragmentise

	
fragmentise(grid)

	Collect columns along each axis that do not contain zero cells

	Parameters:

	grid – 3d array

	Returns:

	array of index triples

febid.heat_transfer.get_heat_transfer_stability_time

	
get_heat_transfer_stability_time(k, rho, cp, dx)

	Get the largest stable time step for the FTCS scheme.

	Parameters:

	
	k – thermal conductivity, [W/m/K]

	rho – density, [g/cm^3]

	cp – heat capacity, [J/kg/K]

	dx – grid step (cell size), nm

	Returns:

	time step in seconds

febid.heat_transfer.heat_transfer_BE

	
heat_transfer_BE(grid, conditions, k, cp, rho, dt, dl, heat_source=0, substrate_T=294)

	Calculate temperature distribution after the specified time step by solving the parabollic heat equation.

The heat equation with the heat source term is solved by backward Euler scheme.

Fractional step method is used to numerically solve the PDE in 3D space.

	There are two options for boundary conditions:
	‘isolated’: the structure is isolated from both void and substrate

“heatsink’: the structure disipates heat through the substarete that has a constant temperature.

febid.heat_transfer.heat_transfer_steady_sor

	
heat_transfer_steady_sor(grid, k, dl, heat_source, eps, solid_index=None)

	Find steady-state solution to the heat equation with the given accuracy

	Parameters:

	
	grid – 3D temperature array

	k – thermal conductivity, [W/K/m]

	dl – grid spacing (cell size), nm

	heat_source – 3D volumetric heating source array, [W/nm^3]

	eps – desired accuracy

	solid_index – indexes of solid cells

	Returns:

	3D temperature array

febid.heat_transfer.prepare_solid_index

	
prepare_solid_index(grid)

	

febid.heat_transfer.subdivide_list

	
subdivide_list(grid, i=0, j=0, axis=2)

	Extract start and end indexes of the non-zero sections in the array.

This function virtually prevents zeros from appearing in a solution matrix by extracting the ‘solid’ cells along
the slice.

	Parameters:

	
	grid – 1D array

	i – first index of the current slice

	j – second index of the current slice

	axis – axis along which the slice was taken

	Returns:

	

febid.heat_transfer.temperature_stencil

	
temperature_stencil(grid, k, cp, rho, dt, dl, heat_source=0, solid_index=None, substrate_T=294, flat=False, add=0)

	Calculates diffusion term for the surface cells using stencil operator

Nevertheless, ‘solid_index’ is an optional argument,
it is highly recommended to handle index from the caller function.

	Parameters:

	
	grid – 3D temperature array

	k – thermal conductivity, [W/K/m]

	cp – heat capacity, [J/kg/K]

	rho – density, [g/cm^3]

	dt – time interval over which diffusion term is calculated, s

	dl – grid spacing (cell size), nm

	heat_source – 3D volumetric heating source array, [W/nm^3]

	solid_index – indexes of solid cells

	substrate_T – temperature of the substrate

	flat – if True, returns a flat array of surface cells. Otherwise, returns a 3d array with the same shape as grid.

	add –

	Returns:

	3d or 1d ndarray

febid.libraries

Extension modules. Contains electron ray-tracing, stencil and visualisation modules

	febid.libraries.pde

	

	febid.libraries.ray_traversal

	Extension modules.

	febid.libraries.rolling

	Extension modules.

	febid.libraries.vtk_rendering

	Visualization utilities via Pyvista

febid.libraries.pde

	febid.libraries.pde.tridiag

	Tridiagonal parallel matrix solver

febid.libraries.pde.tridiag

Tridiagonal parallel matrix solver

Functions

	adi_3d

	Solve a PDE in 3D uniform domain using ADI method with backward Euler scheme.

	adi_3d_indexing

	Solve a PDE in 3D domain using ADI method.

	tridiag_1d

	Tridiagonal matrix solver

febid.libraries.pde.tridiag.adi_3d

	
adi_3d()

	Solve a PDE in 3D uniform domain using ADI method with backward Euler scheme.

	Parameters:

	
	d – right hand side vector

	x – vector to be solved

	a – equation coefficient

	boundaries – type of boundary conditions: 0 for 0 at boundaries, 1 for fixed boundaries, 2 for no flow through boundaries

febid.libraries.pde.tridiag.adi_3d_indexing

	
adi_3d_indexing()

	Solve a PDE in 3D domain using ADI method.
Use provided slices to solve for certain regions.

	Parameters:

	
	d – right hand side vector

	x – vector to be solved

	s1 – index triples for x-axis, that define a 1d slice

	s2 – index triples for y-axis, that define a 1d slice

	s3 – index triples for z-axis, that define a 1d slice

	a – equation coefficient, proportional to diffusivity

	boundaries – type of boundary conditions: 0 for 0 at boundaries, 1 for fixed boundaries, 2 for no flow through boundaries

febid.libraries.pde.tridiag.tridiag_1d

	
tridiag_1d()

	Tridiagonal matrix solver

The solver uses Thomas algorithm.

	Parameters:

	
	d – right hand side vector

	x – output vector

	b – main diagonal value

	c – upper and lower diagonal value

	b0 – boundary value for main diagonal

	c0 – boundary value for upper and lower diagonals

	Returns:

	

febid.libraries.ray_traversal

Extension modules. Contains electron ray-tracing, stencil and visualisation modules

	febid.libraries.ray_traversal.traversal

	

febid.libraries.ray_traversal.traversal

Functions

	det_1d

	Calculate the length of a vector :param vector: array with 3 elements :return:

	det_2d

	Calculate the length of vectors in an array

	divide_segments

	

	generate_flux

	Wrapper for Cython function.

	get_Eloss

	

	get_alpha_and_lambda

	

	get_direction

	

	get_solid_crossing

	

	get_surface_crossing

	

	get_surface_solid_crossing

	

	traverse_segment

	Wrapper for Cython function.

febid.libraries.ray_traversal.traversal.det_1d

	
det_1d(double[:] vector) → double

	Calculate the length of a vector
:param vector: array with 3 elements
:return:

febid.libraries.ray_traversal.traversal.det_2d

	
det_2d(double[:, :] arr_of_vectors, double[:] out) → void

	Calculate the length of vectors in an array

	Parameters:

	
	arr_of_vectors – array of vectors listed along 0 axis

	out – output array, has to be the same length as input’s 0 axis

	Returns:

	

febid.libraries.ray_traversal.traversal.divide_segments

	
divide_segments(double[:] dEs, double[:, :] coords, int[:] num, double[:, :] delta, double[:, :] pieces, double[:] energies) → void

	

febid.libraries.ray_traversal.traversal.generate_flux

	
generate_flux(double[:, :, :] flux, unsigned char[:, :, :] surface, int cell_dim, double[:, :] p0, double[:, :] pn, double[:, :] direction, signed char[:, :] index_corr, double[:, :] t, double[:, :] step_t, double[:] n_se, int max_count) → double

	Wrapper for Cython function.
Generate surface SE flux.

	Parameters:

	
	flux – array to accumulate SEs

	surface – array describing surface

	cell_dim – size of a grid cell

	p0 – starting points

	pn – end-points

	direction – pointing directions(vectors)

	t – arbitrary values to detect crossing

	step_t – increments of t value

	n_se – number of SEs emitted

	max_count – maximum number of crossing events per emission

	Returns:

	total SE yield

febid.libraries.ray_traversal.traversal.get_Eloss

	
get_Eloss(double E, int Z, double rho, double A, double J, double step) → double

	

febid.libraries.ray_traversal.traversal.get_alpha_and_lambda

	
get_alpha_and_lambda(double E, int Z, double rho, double A) -> (float, float)

	

febid.libraries.ray_traversal.traversal.get_direction

	
get_direction(double ctheta, double stheta, double psi, double cz, double cy, double cx) -> (float, float, float)

	

febid.libraries.ray_traversal.traversal.get_solid_crossing

	
get_solid_crossing(double[:, :, :] grid, int cell_dim, double[:] p0, double[:] direction, double[:] t, double[:] step_t, signed char[:] sign, double[:] coord) → unsigned char

	

febid.libraries.ray_traversal.traversal.get_surface_crossing

	
get_surface_crossing(unsigned char[:, :, :] surface, int cell_dim, double[:] p0, double[:] pn, double[:] direction, double[:] t, double[:] step_t, signed char[:] sign, double[:] coord) → void

	

febid.libraries.ray_traversal.traversal.get_surface_solid_crossing

	
get_surface_solid_crossing(unsigned char[:, :, :] surface, double[:, :, :] grid, int cell_dim, double[:] p0, double[:] pn, double[:] direction, double[:] t, double[:] step_t, signed char[:] sign, double[:] coord, double[:] coord1) → unsigned char

	

febid.libraries.ray_traversal.traversal.traverse_segment

	
traverse_segment(double[:, :, :] energies, double[:, :, :] grid, int cell_dim, double[:, :] p0, double[:, :] pn, double[:, :] direction, double[:, :] t, double[:, :] step_t, double[:] dEs, int max_count) → double

	Wrapper for Cython function.
Deposits energies to the structure based on the energy losses.

	Parameters:

	
	L – distances between segment points

	cell_dim – size of a cell

	dEs – energies lost on segments

	direction – segment pointing direction

	energies – structured array of deposited energies

	grid – surface array

	p0 – starting points of segments

	pn – c of segments

	step_t – increments of t value

	t – arbitrary values to detect crossing

	N – number of segments

	Returns:

	total deposited energy

febid.libraries.rolling

Extension modules. Contains electron ray-tracing, stencil and visualisation modules

	febid.libraries.rolling.roll

	

febid.libraries.rolling.roll

Functions

	rolling_1d

	

	rolling_2d

	Analog of the np.roll for 2d arrays :param arr: array to add to :param brr: addition

	rolling_3d

	Analog of the np.roll for 3d arrays :param arr: array to add to :param brr: addition

	stencil

	Stencil operator.

	stencil_gs

	Stencil operator.

	stencil_sor

	Stencil operator.

	surface_temp_av

	Define temperature of the surface cells by averaging temperature of the neighboring solid cells

febid.libraries.rolling.roll.rolling_1d

	
rolling_1d()

	

febid.libraries.rolling.roll.rolling_2d

	
rolling_2d()

	Analog of the np.roll for 2d arrays
:param arr: array to add to
:param brr: addition

	Returns:

	

febid.libraries.rolling.roll.rolling_3d

	
rolling_3d()

	Analog of the np.roll for 3d arrays
:param arr: array to add to
:param brr: addition

	Returns:

	

febid.libraries.rolling.roll.stencil

	
stencil()

	Stencil operator. Sums all the neighbors to the current cell.
If a neighbor is 0 or out of the bounds, then adds cell’s current value to itself.
Arrays must have the same shape.
:param grid_out: operated array
:param grid: source array
:param z: first array index
:param y: second array index
:param x: third array index
:return:

febid.libraries.rolling.roll.stencil_gs

	
stencil_gs()

	Stencil operator. Sums all the neighbors to the current cell.
If a neighbor is 0 or out of the bounds, then adds cell’s current value to itself.
Arrays must have the same shape.
:param grid: operated array
:param s: power source array
:param w: over-relaxation parameter
:param z_index: first array index
:param y_index: second array index
:param x_index: third array index
:return:

febid.libraries.rolling.roll.stencil_sor

	
stencil_sor()

	Stencil operator. Sums all the neighbors to the current cell.
If a neighbor is 0 or out of the bounds, then adds cell’s current value to itself.
Arrays must have the same shape.
:param grid: operated array
:param s: power source array
:param w: over-relaxation parameter
:param z_index: first array index
:param y_index: second array index
:param x_index: third array index
:return:

febid.libraries.rolling.roll.surface_temp_av

	
surface_temp_av()

	Define temperature of the surface cells by averaging temperature of the neighboring solid cells

	Parameters:

	
	surface_temp – surface temperature array

	temp – solid temperature array

	z – first array index

	y – second array index

	x – third array index

	Returns:

	

febid.libraries.vtk_rendering

Visualization utilities via Pyvista

	febid.libraries.vtk_rendering.VTK_Rendering

	Core visualization module

	febid.libraries.vtk_rendering.show_animation_new

	View series of consequent 3D-Structure files as an animated process.

	febid.libraries.vtk_rendering.show_file

	View the 3D-structure files produced by the simulation.

febid.libraries.vtk_rendering.VTK_Rendering

Core visualization module

Functions

	export_obj

	Export deposited structure as an .obj file

	numpy_to_vtk

	Convert numpy array to a VTK-datastructure (UniformGrid or UnstructuredGrid).

	read_field_data

	Read run time, simulation time and beam position from vtk-file.

	save_deposited_structure

	Save current deposition result to a vtk file.

Classes

	Render

	Class implementing rendering utilities for visualizing of Numpy data using Pyvista

febid.libraries.vtk_rendering.VTK_Rendering.export_obj

	
export_obj(structure, filename=None)

	Export deposited structure as an .obj file

	Parameters:

	
	structure – Structure class instance, must have ‘deposit’ array and ‘cell_dimension’ value

	filename – full path with file name

	Returns:

	

febid.libraries.vtk_rendering.VTK_Rendering.numpy_to_vtk

	
numpy_to_vtk(arr, cell_dim, data_name='scalar', grid=None, unstructured=False)

	Convert numpy array to a VTK-datastructure (UniformGrid or UnstructuredGrid).
If grid is provided, add new dataset to that grid.

	Parameters:

	
	arr – numpy array

	cell_dim – array cell (cubic) edge length

	data_name – name of data

	grid – existing UniformGrid

	unstructured – if True, return an UnstructuredGrid

	Returns:

	

febid.libraries.vtk_rendering.VTK_Rendering.read_field_data

	
read_field_data(vtk_obj)

	Read run time, simulation time and beam position from vtk-file.

	Parameters:

	vtk_obj – VTK-object (UniformGrid)

	Returns:

	

febid.libraries.vtk_rendering.VTK_Rendering.save_deposited_structure

	
save_deposited_structure(structure, sim_t=None, t=None, beam_position=None, filename=None)

	Save current deposition result to a vtk file.
If filename does not contain path, saves to the current directory.

	Parameters:

	
	structure – an instance of the current state of the process

	sim_t – simulation time, s

	t – run time

	beam_position – (x,y) current position of the beam

	filename – full file name

	Returns:

	

febid.libraries.vtk_rendering.VTK_Rendering.Render

	
class Render(cell_dim, font=12, button_size=25)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class implementing rendering utilities for visualizing of Numpy data using Pyvista

	Parameters:

	
	cell_dim (int [https://docs.python.org/3/library/functions.html#int]) – cell data spacing for VTK objects

	font – button caption font size

	button_size – size of the show on/off button

Methods

	save_3Darray

	Dump a Numpy array to a vtk file with a specified name and creation date

	show

	Shows plotting scene

	show_full_structure

	Render and plot all the structure components

	show_mc_result

	

	update

	Update the plot

	update_mask

	

	
class SetVisibilityCallback(actor)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Helper callback to keep a reference to the actor being modified.
This helps button show and hide plot elements

	
__call__(state)

	Call self as a function.

	
save_3Darray(filename, arr, data_name='scalar')

	Dump a Numpy array to a vtk file with a specified name and creation date

	Parameters:

	
	filename – distinct name of the file

	arr – array to save

	data_name – name of the data to include in the vtk dataset

	Returns:

	

	
show(screenshot=False, show_grid=True, keep_plot=False, interactive_update=False, cam_pos=None)

	Shows plotting scene

	Parameters:

	
	screenshot – if True, a screenshot of the scene will be saved upon showing

	show_grid – indicates axes and scales

	keep_plot – if True, creates a copy of current Plotter before showing

	interactive_update – if True, code execution does not stop while scene window is opened

	cam_pos – camera view

	Returns:

	current camera view

	
show_full_structure(structure, struct=True, deposit=True, precursor=True, surface=True, semi_surface=True, temperature=True, ghosts=True, t=None, sim_time=None, beam=None, cam_pos=None)

	Render and plot all the structure components

	Parameters:

	
	structure (Structure) – data object

	struct – if True, plot solid structure

	deposit – if True, plot deposit on the surface

	precursor – if True, plot precursor surface density

	surface – if True, color all surface cells

	semi_surface – if True, color all semi_surface cells

	ghosts – if True, color ghost cells

	Returns:

	

	
update(time=1, force_redraw=False)

	Update the plot

	Parameters:

	
	time – minimum time before each subsequent update

	force_redraw – redraw the plot immediately

	Returns:

	

febid.libraries.vtk_rendering.show_animation_new

View series of consequent 3D-Structure files as an animated process.

Functions

	open_file

	Gather files and timestamps sorted in the order of creation

	show_animation

	Show animated process from series of vtk files.

febid.libraries.vtk_rendering.show_animation_new.open_file

	
open_file(directory='')

	Gather files and timestamps sorted in the order of creation

	Parameters:

	directory – folder with vtk files

	Returns:

	filenames and timestamps

febid.libraries.vtk_rendering.show_animation_new.show_animation

	
show_animation(directory='', show='precursor')

	Show animated process from series of vtk files.
Files must have consequent creation dates to align correctly

	Parameters:

	
	directory – folder with vtk files

	show – which dataset to use for imaging. Accepts ‘precursor’ for surface precursor density or ‘deposit’ for surface deposit filling.

	Returns:

	

febid.libraries.vtk_rendering.show_file

View the 3D-structure files produced by the simulation.

Functions

	show_structure

	

febid.libraries.vtk_rendering.show_file.show_structure

	
show_structure(filenames, solid=True, deposit=True, precursor=True, surface=True, semi_surface=True, ghost=True)

	

febid.monte_carlo

Monte Carlo electron beam – matter interaction simulation subpackage

	febid.monte_carlo.compiled

	

	febid.monte_carlo.etraj3d

	Monte Carlo simulation main module

	febid.monte_carlo.etrajectory

	Primary electron trajectory simulator

	febid.monte_carlo.etrajmap3d

	Electron-matter interaction simulator

	febid.monte_carlo.mc_base

	Monte Carlo simulator utility module

febid.monte_carlo.compiled

	febid.monte_carlo.compiled.etrajectory_c

	

febid.monte_carlo.compiled.etrajectory_c

Functions

	get_materials

	

	start_sim

	

Classes

	BuffVector

	

	Electron

	

	SimulationVolume

	

febid.monte_carlo.compiled.etrajectory_c.get_materials

	
get_materials()

	

febid.monte_carlo.compiled.etrajectory_c.start_sim

	
start_sim()

	

febid.monte_carlo.compiled.etrajectory_c.BuffVector

	
class BuffVector

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Methods

febid.monte_carlo.compiled.etrajectory_c.Electron

	
class Electron

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Methods

febid.monte_carlo.compiled.etrajectory_c.SimulationVolume

	
class SimulationVolume

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Methods

febid.monte_carlo.etraj3d

Monte Carlo simulation main module

Functions

	run_mc_simulation

	Create necessary objects and run the MC simulation

Classes

	MC_Simulation

	Monte Carlo simulation main class

febid.monte_carlo.etraj3d.run_mc_simulation

	
run_mc_simulation(structure, E0=20, sigma=5, n=1, N=100, pos='center', precursor='Au', Emin=0.1, emission_fraction=0.6, heating=False, params={}, cam_pos=None)

	Create necessary objects and run the MC simulation

	Parameters:

	
	structure –

	E0 –

	sigma –

	N –

	pos –

	precursor –

	Emin –

	Returns:

	

febid.monte_carlo.etraj3d.MC_Simulation

	
class MC_Simulation(structure, mc_params)

	Bases: MC_Sim_Base

Monte Carlo simulation main class

Methods

	plot

	Show the structure with surface electron flux and electron trajectories

	plot_flux_2d

	

	run_simulation

	Run MC simulation with the beam coordinates

	update_structure

	Renew memory addresses of the arrays

Attributes

	shape

	

	shape_abs

	

	
plot(primary_e=True, secondary_flux=True, secondary_e=False, heat_total=False, heat_pe=False, heat_se=False, timings=(None, None, None), cam_pos=None)

	Show the structure with surface electron flux and electron trajectories

	Returns:

	

	
run_simulation(y0, x0, heat, N=None)

	Run MC simulation with the beam coordinates

	Parameters:

	
	y0 – spot y-coordinate

	x0 – spot x-coordinate

	heat – if True, calculate beam heating

	Returns:

	SE surface flux

	
update_structure(structure)

	Renew memory addresses of the arrays

	Parameters:

	structure –

	Returns:

	

febid.monte_carlo.etrajectory

Primary electron trajectory simulator

Classes

	ETrajectory

	A class responsible for the generation and scattering of electron trajectories

	Electron

	A class representing a single electron with its properties and methods to define its scattering vector.

febid.monte_carlo.etrajectory.ETrajectory

	
class ETrajectory

	Bases: MC_Sim_Base

A class responsible for the generation and scattering of electron trajectories

Methods

	get_crossing_point

	

	get_next_crossing

	Get next two crossing points and a flag showing if volume boundaries are met

	get_norm_factor

	Calculate norming factor with the given number of generated trajectories

	map_trajectory

	Simulate trajectory of the electrons with a specified starting position.

	map_trajectory_verbose

	Simulate trajectory of the electrons with a specified starting position.

	map_wrapper

	Create normally distributed electron positions and run trajectory mapping

	map_wrapper_cy

	Create normally distributed electron positions and run trajectory mapping in Cython

	plot_distribution

	Plot a scatter plot of the (x,y) points with 2D histograms depicting axial distribution

	rnd_gauss_xy

	Generate a specified number of points according to a Gaussian distribution.

	rnd_super_gauss

	Generate a specified number of points according to a Super Gaussian distribution.

	save_passes

	Save passes to a text file or by pickling

	setParameters

	Initialise the instance and set all the necessary parameters

Attributes

	shape

	

	shape_abs

	

	
get_next_crossing(coords)

	Get next two crossing points and a flag showing if volume boundaries are met

	Parameters:

	coords –

	Returns:

	

	
get_norm_factor(N=None)

	Calculate norming factor with the given number of generated trajectories

	Parameters:

	N – number of trajectories

	Returns:

	

	
map_trajectory(x0, y0)

	Simulate trajectory of the electrons with a specified starting position.

	Parameters:

	
	x0 – x-positions of the electrons

	y0 – y-positions of the electrons

	Returns:

	

	
map_trajectory_verbose(x0, y0)

	Simulate trajectory of the electrons with a specified starting position.
Version with step-by-step output to console.

	Parameters:

	
	x0 – x-positions of the electrons

	y0 – y-positions of the electrons

	Returns:

	

	
map_wrapper(y0, x0, N=0)

	Create normally distributed electron positions and run trajectory mapping

	Parameters:

	
	y0 – y-position of the beam, nm

	x0 – x-position of the beam, nm

	N – number of electrons to create

	Returns:

	

	
map_wrapper_cy(y0, x0, N=0)

	Create normally distributed electron positions and run trajectory mapping in Cython

	Parameters:

	
	y0 – y-position of the beam, nm

	x0 – x-position of the beam, nm

	N – number of electrons to create

	Returns:

	

	
plot_distribution(x, y, func=None)

	Plot a scatter plot of the (x,y) points with 2D histograms depicting axial distribution

	Parameters:

	
	x – array of x-coordinates

	y – array of y-coordinates

	func – 2D probability density function

	Returns:

	

	
rnd_gauss_xy(x0, y0, N)

	Generate a specified number of points according to a Gaussian distribution.
Standard deviation and order of the super gaussian are class properties.

	Parameters:

	
	x0 – mean along X-axis

	y0 – mean along Y-axis

	N – number of points to generate

	Returns:

	two arrays of N-length with x and y positions

	
rnd_super_gauss(x0, y0, N)

	Generate a specified number of points according to a Super Gaussian distribution.
Standard deviation and order of the super gaussian are class properties.

	Parameters:

	
	x0 – mean along X-axis

	y0 – mean along Y-axis

	N – number of points to generate

	Returns:

	two arrays of N-length with x and y positions

	
save_passes(fname, type)

	Save passes to a text file or by pickling

	Parameters:

	
	fname – name of the file

	type – saving type: accepts ‘pickle’ or ‘text’

	Returns:

	

	
setParameters(structure, params, stat=1000)

	Initialise the instance and set all the necessary parameters

	Parameters:

	
	structure – solid structure representation

	params – contains all input parameters for the simulation

	stat – number of simulated trajectories

febid.monte_carlo.etrajectory.Electron

	
class Electron(x, y, parent)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class representing a single electron with its properties and methods to define its scattering vector.

Methods

	check_boundaries

	Check if the given (z,y,x) position is inside the simulation chamber.

	get_direction

	

	get_next_point

	

	index_corr

	Corrects indices according to the direction if coordinates are on the cell wall

Attributes

	coordinates

	Current coordinates (z, y, x)

	coordinates_prev

	Previous coordinates (z, y, x)

	direction

	

	indices

	Gets indices of a cell in an array according to its position in the space

	
check_boundaries(z=0, y=0, x=0)

	Check if the given (z,y,x) position is inside the simulation chamber.
If bounds are crossed, return corrected position

	Parameters:

	
	z –

	y –

	x –

	Returns:

	

	
property coordinates

	Current coordinates (z, y, x)

	Returns:

	tuple

	
property coordinates_prev

	Previous coordinates (z, y, x)

	Returns:

	tuple

	
index_corr()

	Corrects indices according to the direction if coordinates are on the cell wall

	Returns:

	

	
property indices

	Gets indices of a cell in an array according to its position in the space

	Returns:

	i(z), j(y), k(x)

febid.monte_carlo.etrajmap3d

Electron-matter interaction simulator

Functions

	process_trajectories

	Convert raw trajectories into a collection of segments

Classes

	ETrajMap3d

	Implements energy deposition and surface secondary electron flux calculation.

febid.monte_carlo.etrajmap3d.process_trajectories

	
process_trajectories(points, energies, mask)

	Convert raw trajectories into a collection of segments

	Parameters:

	
	points – consequent scattering points

	energies – remaining energy at each point

	mask – marks segments that lie outside of solid

	Returns:

	an array of start- and end-points of segments, energy loss at segment

febid.monte_carlo.etrajmap3d.ETrajMap3d

	
class ETrajMap3d

	Bases: MC_Sim_Base

Implements energy deposition and surface secondary electron flux calculation.

Create an empty ETrajMap3d instance

Methods

	extract_se_heat

	Calculate energy loss by scattered secondary electrons per cell.

	follow_segment

	Calculate total energy deposited by primary electrons per cell.

	generate_se

	Estimate surface secondary electron flux.

	joule_heating

	Get total energy loss from primary and secondary electrons peel

	map_follow

	Get surface secondary electron flux and volumetric heat source distribution

	prep_se_emission

	Subdivide trajectory segments and energy losses

	setParametrs

	Initialise the instance and set all the necessary parameters

	traverse_cells

	AABB Ray-Voxel traversal algorithm.

Attributes

	shape

	

	shape_abs

	

	
extract_se_heat()

	Calculate energy loss by scattered secondary electrons per cell.

	Returns:

	

	
follow_segment(points, dEs)

	Calculate total energy deposited by primary electrons per cell.

	Parameters:

	
	points – array of (z, y, x) points representing a trajectory from MC simulation

	dEs – list of energies losses between consecutive points. dEs[0] corresponds to a loss between p[0] and p[1]

	Returns:

	

	
generate_se()

	Estimate surface secondary electron flux.

	Returns:

	

	
joule_heating()

	Get total energy loss from primary and secondary electrons peel

	
map_follow(passes, heating=False)

	
	Get surface secondary electron flux and volumetric heat source distribution
	from primary electron trajectories.

	Parameters:

	
	passes – a collection of trajectories

	heating – True will calculate collective heat effect from PEs and SEs

	Returns:

	

	
prep_se_emission(points, dEs, ends)

	Subdivide trajectory segments and energy losses

	Parameters:

	
	points – segment start- and end-points

	dEs – energy loss

	ends – trajectory end positions, check comments

	Returns:

	

	
setParametrs(structure, params, segment_min_length=0.3)

	Initialise the instance and set all the necessary parameters

	Parameters:

	
	structure – solid structure representation

	params – contains all input parameters for the simulation

	segment_min_length – segment subdivision length

	
traverse_cells(p0, pn, direction, t, step_t)

	AABB Ray-Voxel traversal algorithm.
Gets coordinates, where ray crosses voxel walls

	Parameters:

	
	p0 – ray origin

	pn – ray endpoint

	direction – direction of the ray

	t – first t-value

	step_t – step of the t-value

	Returns:

	

febid.monte_carlo.mc_base

Monte Carlo simulator utility module

Classes

	Element

	Represents a solid material.

	MC_Sim_Base

	

febid.monte_carlo.mc_base.Element

	
class Element(name='noname', Z=1, A=1.0, rho=1.0, e=50, lambda_escape=1.0, mark=1)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents a solid material.
Contains properties necessary for electron beam-matter interaction.

Methods

febid.monte_carlo.mc_base.MC_Sim_Base

	
class MC_Sim_Base(*args)

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Methods

Attributes

	shape

	

	shape_abs

	

febid.simple_patterns

Stream-file reader and pattern generator

Functions

	analyze_pattern

	Parse stream-file and split it into stages

	generate_circle

	

	generate_line

	

	generate_pattern

	Generate a stream-file for a simple figure.

	generate_point

	

	generate_square

	

	open_stream_file

	Open stream file, convert to nm and define enclosing volume dimensions.

febid.simple_patterns.analyze_pattern

	
analyze_pattern(file, unit_pitch)

	Parse stream-file and split it into stages

febid.simple_patterns.generate_circle

	
generate_circle(loops, dwell_time, x, y, diameter, _, step=1)

	

febid.simple_patterns.generate_line

	
generate_line(loops, dwell_time, x, y, line, _, step=1)

	

febid.simple_patterns.generate_pattern

	
generate_pattern(pattern, loops, dwell_time, x, y, params, step=1)

	Generate a stream-file for a simple figure.

	Parameters:

	
	pattern – name of a shape: point, line, square, rectangle, circle

	loops – amount of passes

	dwell_time – time spent on each point, s

	x – center x position of the figure, nm

	y – center y position of the figure, nm

	params – figure parameters, nm;
(length) for line, (diameter) for circle, (edge length) for cube

	step – distance between each point, nm

	Returns:

	array(x positions[nm], y positions[nm], dwell time[s])

febid.simple_patterns.generate_point

	
generate_point(loops, dwell_time, x, y)

	

febid.simple_patterns.generate_square

	
generate_square(loops, dwell_time, x, y, side_a, side_b=None, step=1)

	

febid.simple_patterns.open_stream_file

	
open_stream_file(file=None, offset=200, collapse=False, unit_pitch=0.13)

	
	Open stream file, convert to nm and define enclosing volume dimensions.
	A valid stream-file should consist of 3 columns and start with ‘s16’ line.

	Parameters:

	
	file – path to the stream-file

	offset – determines a margin around the printing path

	collapse – if True, summ dwell time of consecutive instructions with identical coordinates

	Returns:

	normalized directives in nm and s, dimensions of the enclosing volume in nm

febid.start

Scripting template for running series of simulations

Functions

	atoi

	

	extr_number

	

	read_param

	Read a parameter value from a configuration file.

	scan_settings

	Launch a series of simulations by changing a single parameter

	scan_stream_files

	Launch a series of simulations using multiple patterning files

	start_default

	

	start_no_ui

	

	start_ui

	

	write_param

	Write a value to a parameter in a configuration file.

febid.start.atoi

	
atoi(text)

	

febid.start.extr_number

	
extr_number(text)

	

febid.start.read_param

	
read_param(file, param_name)

	Read a parameter value from a configuration file.

	Parameters:

	
	file – path to configuration file

	param_name – name of the parameter

	Returns:

	value of the parameter

febid.start.scan_settings

	
scan_settings(session_file, param_name, scan, base_name='')

	Launch a series of simulations by changing a single parameter

	Parameters:

	
	session_file – YAML file with session configuration

	param_name – the name of the parameter, refer to settings and precursor parameters

	scan – a collection of values to use in consequent runs

	base_name – a common name for simulation files

	Returns:

	

febid.start.scan_stream_files

	
scan_stream_files(session_file, directory)

	Launch a series of simulations using multiple patterning files

The files are named after the patterning file
:type session_file:
:param session_file: YAML file with session configuration
:type directory:
:param directory: folder with stream files
:return:

febid.start.start_default

	
start_default(config_f=None)

	

febid.start.start_no_ui

	
start_no_ui(config_f=None)

	

febid.start.start_ui

	
start_ui(config_f=None)

	

febid.start.write_param

	
write_param(file, param_name, val)

	Write a value to a parameter in a configuration file.

	Parameters:

	
	file – path to configuration file

	param_name – name of the parameter

	val – value to write

	Returns:

	

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 febid	

 	
 	
 febid.diffusion	

 	
 	
 febid.febid_core	

 	
 	
 febid.heat_transfer	

 	
 	
 febid.libraries	

 	
 	
 febid.libraries.pde	

 	
 	
 febid.libraries.pde.tridiag	

 	
 	
 febid.libraries.ray_traversal	

 	
 	
 febid.libraries.ray_traversal.traversal	

 	
 	
 febid.libraries.rolling	

 	
 	
 febid.libraries.rolling.roll	

 	
 	
 febid.libraries.vtk_rendering	

 	
 	
 febid.libraries.vtk_rendering.show_animation_new	

 	
 	
 febid.libraries.vtk_rendering.show_file	

 	
 	
 febid.libraries.vtk_rendering.VTK_Rendering	

 	
 	
 febid.monte_carlo	

 	
 	
 febid.monte_carlo.compiled	

 	
 	
 febid.monte_carlo.compiled.etrajectory_c	

 	
 	
 febid.monte_carlo.etraj3d	

 	
 	
 febid.monte_carlo.etrajectory	

 	
 	
 febid.monte_carlo.etrajmap3d	

 	
 	
 febid.monte_carlo.mc_base	

 	
 	
 febid.Process	

 	
 	
 febid.simple_patterns	

 	
 	
 febid.start	

 	
 	
 febid.Statistics	

 	
 	
 febid.Structure	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__call__() (Render.SetVisibilityCallback method)

A

 	
 	add_plots() (Statistics method)

 	add_stat() (Statistics method)

 	adi_3d() (in module febid.libraries.pde.tridiag)

 	
 	adi_3d_indexing() (in module febid.libraries.pde.tridiag)

 	analyze_pattern() (in module febid.simple_patterns)

 	append() (Statistics method)

 	atoi() (in module febid.start)

B

 	
 	buffer_constants() (in module febid.febid_core)

 	
 	BuffVector (class in febid.monte_carlo.compiled.etrajectory_c)

C

 	
 	check_boundaries() (Electron method)

 	check_cells_filled() (Process method)

 	
 	coordinates (Electron property)

 	coordinates_prev (Electron property)

 	create_from_parameters() (Structure method)

D

 	
 	define_ghosts() (Structure method)

 	define_semi_surface() (Structure method)

 	define_surface() (Structure method)

 	define_surface_neighbors() (Structure method)

 	deposition() (Process method)

 	det_1d() (in module febid.libraries.ray_traversal.traversal)

 	
 	det_2d() (in module febid.libraries.ray_traversal.traversal)

 	diffusion_coefficient() (Process method)

 	diffusion_coefficient_expression() (Process method)

 	diffusion_ftcs() (in module febid.diffusion)

 	divide_segments() (in module febid.libraries.ray_traversal.traversal)

 	dump_structure() (in module febid.febid_core)

E

 	
 	Electron (class in febid.monte_carlo.compiled.etrajectory_c)

 	(class in febid.monte_carlo.etrajectory)

 	Element (class in febid.monte_carlo.mc_base)

 	equilibrate() (Process method)

 	
 	ETrajectory (class in febid.monte_carlo.etrajectory)

 	ETrajMap3d (class in febid.monte_carlo.etrajmap3d)

 	export_obj() (in module febid.libraries.vtk_rendering.VTK_Rendering)

 	extr_number() (in module febid.start)

 	extract_se_heat() (ETrajMap3d method)

F

 	
 	
 febid

 	module

 	
 febid.diffusion

 	module

 	
 febid.febid_core

 	module

 	
 febid.heat_transfer

 	module

 	
 febid.libraries

 	module

 	
 febid.libraries.pde

 	module

 	
 febid.libraries.pde.tridiag

 	module

 	
 febid.libraries.ray_traversal

 	module

 	
 febid.libraries.ray_traversal.traversal

 	module

 	
 febid.libraries.rolling

 	module

 	
 febid.libraries.rolling.roll

 	module

 	
 febid.libraries.vtk_rendering

 	module

 	
 febid.libraries.vtk_rendering.show_animation_new

 	module

 	
 febid.libraries.vtk_rendering.show_file

 	module

 	
 febid.libraries.vtk_rendering.VTK_Rendering

 	module

 	
 	
 febid.monte_carlo

 	module

 	
 febid.monte_carlo.compiled

 	module

 	
 febid.monte_carlo.compiled.etrajectory_c

 	module

 	
 febid.monte_carlo.etraj3d

 	module

 	
 febid.monte_carlo.etrajectory

 	module

 	
 febid.monte_carlo.etrajmap3d

 	module

 	
 febid.monte_carlo.mc_base

 	module

 	
 febid.Process

 	module

 	
 febid.simple_patterns

 	module

 	
 febid.start

 	module

 	
 febid.Statistics

 	module

 	
 febid.Structure

 	module

 	fill_surface() (Structure method)

 	fit_exponential() (in module febid.heat_transfer)

 	flush_structure() (Structure method)

 	follow_segment() (ETrajMap3d method)

 	fragmentise() (in module febid.heat_transfer)

G

 	
 	generate_circle() (in module febid.simple_patterns)

 	generate_flux() (in module febid.libraries.ray_traversal.traversal)

 	generate_line() (in module febid.simple_patterns)

 	generate_pattern() (in module febid.simple_patterns)

 	generate_point() (in module febid.simple_patterns)

 	generate_se() (ETrajMap3d method)

 	generate_square() (in module febid.simple_patterns)

 	get_alpha_and_lambda() (in module febid.libraries.ray_traversal.traversal)

 	get_diffusion_stability_time() (in module febid.diffusion)

 	
 	get_direction() (in module febid.libraries.ray_traversal.traversal)

 	get_Eloss() (in module febid.libraries.ray_traversal.traversal)

 	get_heat_transfer_stability_time() (in module febid.heat_transfer)

 	get_materials() (in module febid.monte_carlo.compiled.etrajectory_c)

 	get_next_crossing() (ETrajectory method)

 	get_norm_factor() (ETrajectory method)

 	get_params() (Statistics method)

 	get_solid_crossing() (in module febid.libraries.ray_traversal.traversal)

 	get_surface_crossing() (in module febid.libraries.ray_traversal.traversal)

 	get_surface_solid_crossing() (in module febid.libraries.ray_traversal.traversal)

H

 	
 	heat_transfer() (Process method)

 	
 	heat_transfer_BE() (in module febid.heat_transfer)

 	heat_transfer_steady_sor() (in module febid.heat_transfer)

I

 	
 	index_corr() (Electron method)

 	
 	indices (Electron property)

 	initialize_framework() (in module febid.febid_core)

J

 	
 	joule_heating() (ETrajMap3d method)

L

 	
 	laplace_term_stencil() (in module febid.diffusion)

 	
 	load_from_vtk() (Structure method)

M

 	
 	map_follow() (ETrajMap3d method)

 	map_trajectory() (ETrajectory method)

 	map_trajectory_verbose() (ETrajectory method)

 	map_wrapper() (ETrajectory method)

 	map_wrapper_cy() (ETrajectory method)

 	max_z() (Structure method)

 	MC_Sim_Base (class in febid.monte_carlo.mc_base)

 	MC_Simulation (class in febid.monte_carlo.etraj3d)

 	
 module

 	febid

 	febid.diffusion

 	febid.febid_core

 	febid.heat_transfer

 	febid.libraries

 	febid.libraries.pde

 	febid.libraries.pde.tridiag

 	febid.libraries.ray_traversal

 	febid.libraries.ray_traversal.traversal

 	febid.libraries.rolling

 	febid.libraries.rolling.roll

 	febid.libraries.vtk_rendering

 	febid.libraries.vtk_rendering.show_animation_new

 	febid.libraries.vtk_rendering.show_file

 	febid.libraries.vtk_rendering.VTK_Rendering

 	febid.monte_carlo

 	febid.monte_carlo.compiled

 	febid.monte_carlo.compiled.etrajectory_c

 	febid.monte_carlo.etraj3d

 	febid.monte_carlo.etrajectory

 	febid.monte_carlo.etrajmap3d

 	febid.monte_carlo.mc_base

 	febid.Process

 	febid.simple_patterns

 	febid.start

 	febid.Statistics

 	febid.Structure

 	
 	monitoring() (in module febid.febid_core)

N

 	
 	nd (Process property)

 	
 	nr (Process property)

 	numpy_to_vtk() (in module febid.libraries.vtk_rendering.VTK_Rendering)

O

 	
 	open_file() (in module febid.libraries.vtk_rendering.show_animation_new)

 	
 	open_stream_file() (in module febid.simple_patterns)

P

 	
 	plot() (MC_Simulation method)

 	(Statistics method)

 	plot_distribution() (ETrajectory method)

 	precursor_density() (Process method)

 	prep_se_emission() (ETrajMap3d method)

 	
 	prepare_solid_index() (in module febid.heat_transfer)

 	prepare_surface_index() (in module febid.diffusion)

 	print_all() (in module febid.febid_core)

 	print_step() (in module febid.febid_core)

 	Process (class in febid.Process)

 	process_trajectories() (in module febid.monte_carlo.etrajmap3d)

R

 	
 	read_field_data() (in module febid.libraries.vtk_rendering.VTK_Rendering)

 	read_param() (in module febid.start)

 	Render (class in febid.libraries.vtk_rendering.VTK_Rendering)

 	Render.SetVisibilityCallback (class in febid.libraries.vtk_rendering.VTK_Rendering)

 	residence_time() (Process method)

 	residence_time_expression() (Process method)

 	resize_structure() (Structure method)

 	restrict() (in module febid.Process)

 	
 	rnd_gauss_xy() (ETrajectory method)

 	rnd_super_gauss() (ETrajectory method)

 	rolling_1d() (in module febid.libraries.rolling.roll)

 	rolling_2d() (in module febid.libraries.rolling.roll)

 	rolling_3d() (in module febid.libraries.rolling.roll)

 	run_febid() (in module febid.febid_core)

 	run_febid_interface() (in module febid.febid_core)

 	run_mc_simulation() (in module febid.monte_carlo.etraj3d)

 	run_simulation() (MC_Simulation method)

S

 	
 	save_3Darray() (Render method)

 	save_deposited_structure() (in module febid.libraries.vtk_rendering.VTK_Rendering)

 	save_passes() (ETrajectory method)

 	save_to_file() (Statistics method)

 	scan_settings() (in module febid.start)

 	scan_stream_files() (in module febid.start)

 	setParameters() (ETrajectory method)

 	setParametrs() (ETrajMap3d method)

 	show() (Render method)

 	show_animation() (in module febid.libraries.vtk_rendering.show_animation_new)

 	show_full_structure() (Render method)

 	show_structure() (in module febid.libraries.vtk_rendering.show_file)

 	
 	SimulationVolume (class in febid.monte_carlo.compiled.etrajectory_c)

 	start_default() (in module febid.start)

 	start_no_ui() (in module febid.start)

 	start_sim() (in module febid.monte_carlo.compiled.etrajectory_c)

 	start_ui() (in module febid.start)

 	Statistics (class in febid.Statistics)

 	stencil() (in module febid.libraries.rolling.roll)

 	stencil_debug() (in module febid.diffusion)

 	stencil_gs() (in module febid.libraries.rolling.roll)

 	stencil_sor() (in module febid.libraries.rolling.roll)

 	Structure (class in febid.Structure)

 	subdivide_list() (in module febid.heat_transfer)

 	surface_temp_av() (in module febid.libraries.rolling.roll)

T

 	
 	temperature_stencil() (in module febid.heat_transfer)

 	traverse_cells() (ETrajMap3d method)

 	
 	traverse_segment() (in module febid.libraries.ray_traversal.traversal)

 	tridiag_1d() (in module febid.libraries.pde.tridiag)

U

 	
 	update() (Render method)

 	update_graphical() (in module febid.febid_core)

 	update_helper_arrays() (Process method)

 	
 	update_shape() (Structure method)

 	update_structure() (MC_Simulation method)

 	update_surface() (Process method)

W

 	
 	write_param() (in module febid.start)

Algorithms

Hausdorff distance

In the Monte Carlo module secondary electrons (SE) that drive both dissociation
and beam heating are divided into two groups after emission. SEs that are emitted in the surface vicinity
are considered contributing to the dissociation, while all others are scattered and contribute to the heating effect.
The main criteria for the division is distance to the surface: if the distance is shorter than the SE’s
inelastic mean free path (IMFP), it is added to the ‘dissociation’ group or to the ‘heating’ otherwise.

[image: _images/hausdorff_distance.png]

Hausdorff distance matrix [Lee2019]

In order to determine to which group an SE belongs, it’s emission point is superimposed with a distance or
Hausdorff distance matrix.
Each cell in the matrix is assigned a distance to the nearest surface cell based on the cell size (i.e. 2 nm).
In such manner surface vicinity can be evaluated in an effective manner, that requires only calculation of SE’s
position in the matrix and comparison to the integer array.

Taking into account that for a given simulation configuration the IMFP and the cell size are fixed,
the array can be converted to a boolean one, where 1 denotes distances less than IMFP and 0 larger than IMFP.
Such simplification reduces memory consumption and computational comparison cost.

The algorithm producing the initial integer matrix is based on a simple operation of adding unity to all cells
that have at least one non-zero neighbor (starting with unity at the surface). Every n-th iteration will populate
a new layer of cells denoting the n-th surface nearest neighbor.

As the surface evolves dynamically, it is necessary to update the Hausdorff distance matrix according to the new
surface profile. Performing aforementioned operations every time a new solid cell is added is computationally
expensive to perform on the whole array. Thus, it can be performed locally. By selecting a section of the matrix
with a newly deposited cell in the center, the Hausdorff distances can be updated locally. The random nature of
cell filling order updates the matrix evenly and keeps it consistent. Not only this approach reduces computational
time by orders of magnitude, but also sustains it at the same level regardless of the grid size.

[Lee2019]
Lee K.-I., Lee H.-T. et al., Simulation of dynamic growth rate of focused ion beam-induced deposition using Hausdorff distance, Sensors and Actuators A: Physical 2019, 286, 169-177

API

	febid

	FEBID Simulator package

Parameter approximations

Deposited volume

The result of dissociation process is the added deposited volume, that is proportional to to number of dissociated
precursor molecules. In the simulation each molecule is assumed to produce a certain volume of deposit.
A volume of the smallest deposit volume then can be derived from density and composition of the bulk deposit:

[image: \Delta V=\frac M{N_A\cdot\rho}]

	where:
	[image: M] is the molecular mass of the model molecule reflecting bulk composition [image: \left[\frac g mol\right]]

[image: N_A] is the Avogadro number

[image: \rho] is density of the deposit

Atomic number

Effective or average atomic number of a multi-component material can be estimated based on two criteria:

	
	Atom number density:
	[image: n_a=\frac{n_m\cdot N_A\cdot\rho}M]

	where:
	[image: n_m] is the number of atoms in the model molecule

[image: M] is the molecular mass of the model molecule reflecting bulk composition [image: \left[\frac g mol\right]]

	
	Atom number averaging:
	[image: \overline Z = \sqrt{\sum_{i=1}^{n_m} a_i\cdot Z_i^2}]

Both values have to be checked against those of elements in the periodic table to find the best matching element.

Residence time

The heating and temperature tracking serves for the definition of temperature dependent time at runtime.
The dependence is Arrhenius-like and is described by the following relation:

[image: \tau=\frac{1}{k_0}exp\left(\frac{E_a}{k_B T} \right)]

	where:
	[image: k_0] is the exponential prefactor representing desorption attempt frequency [Hz]

[image: E_a] is the adsorption energy [meV]

[image: k_b] is the Bolzman constant

[image: T] is temperature [K]

Diffusion

Simulation space

Space discretization:

Define the space:

	Substrate:
	Substrate serves as a support for the grown structure and indicates the base of the simulation cahmber.
Substrate thickness or height should be chosen based on three considerations:

	It must be thicker than secondary electron bean free path

	It must be at least 2 cells high regardless of cell size

 _images/math/2aa3fbf7d457b5f46791f364abce57249912721f.png

_images/math/375cc339eede172923d822e342bce4cc0adc41db.png

_images/math/32077b17e670a21b78b0f7955971b46ac7af705c.png
VT = —

_images/math/3fc8fcf5be80f71b8beef18960a43d1296eb8d49.png
28 2
o = DV*T

_images/math/3b0dd9e361b0090438701e794cc3296db6188411.png

_images/math/4025344f888349cebf0bd0519b3f8e09eb9bf904.png
R

_images/math/3fda15dae4e8d2d8bfe221d13cffd083ad65cd5d.png
aT:Dat(TH v e S A)

_images/math/4df11866b2ebe9e85782a025dae4d3c0bd422cfc.png
(It

_images/math/4abba779877abb276b98ccb2b4ba9bf2e41947ab.png

_images/math/28f075337d3598fac80d906340b88cc86f6d9338.png

_images/math/27dc86f9f1b1c3435b2403a869b5870c582facea.png

nav.xhtml

 Table of Contents

 		
 Welcome to FEBID Simulation documentation!

_images/math/0f12d006b176053c049ebd6c040dc59c8dbe5edc.png

_images/math/0d45ccc2e051091ef80ab030ef750246c99c6a64.png

_images/math/1815f600df7845409443aed470eac2d449e4ddb0.png

_images/math/0fcab9067b50b87e868c4fd70f213a086addb964.png

_images/math/2037945e45ff9183def4a1c1bcd3ba1cc5668863.png

_images/math/1f678f4e0d6058242c6614a3206bb430e3989495.png
Ar = Ay

_images/math/243653f2b565b327fb1329f25e69ef458b146f3a.png

_images/math/21d255ab98dee40e6f6e0b4e2b84ad59db0b8f4a.png

_images/temperature_influence_diagram.png
L Monte Carlo simulation ’

—

Beam heating: q=04-AE,, +Eg - ng,
Temperature profile: T: V2T = — 1
’ k

Diffusion coefficient, E, D
Residence time: ()= ko " exp (kB) D(T) = Do exp <_kB'_T>

n

. on n 9’n 9*n 9*n
Precursor coverage: — = | (1 - _) _
ot Ny

— ofn + D =t
f <6 2 9y? 0z
adsorption desorption dissociation diffusion

_images/stencil.png

_images/math/0bdf4ccd10c636c6fea43c45002573977e625e12.png

_images/math/a23cb5f760fc8ba0815ffaaae0f5638567fa307a.png
AT, AY, A

_images/math/ac3bafae971246ed094bff796e1bb072f2e1795e.png

_images/math/a5fa84b363f309ebc8fe7db38304541732c7de9a.png

_images/math/c0a98262d5db34698a1e99abbdfe1427558db5fc.png

_images/math/b093524cca7c5e201eff20c8daedae7e61432d1d.png

_images/math/d28e59928f805d44e0a874fe270d872cfdc26383.png

_images/math/cc7cc8f478074da39b2a04d286fe2444178ba85e.png

_images/math/e5f6512ddfc06e9480094597f67d7b4af76db256.png
oT Ticr 2T w4 Tigr Tijor w2 x+Tije1 e Tijw—r
o D(vl + v +

_images/math/dec02c861ff83c03fb44b915af7139a8f1ab058b.png

_images/math/e8dea8254118f111b5fb20895b03528c17566f06.png

_images/math/56e004f5952bb4f6db6f07ece13bead965717ef0.png

_images/math/567cb8a9d522d52db5b62d2897b3e4ded2a0559f.png
A

_images/math/7b59ae99cb08b91e29f124e5e69fe5c14b52831c.png
— 2dat
v=x

_images/math/659e14e04d6b733addcf28d17747c5c9463e21a6.png
Va-eExa+Vp-Ep

_images/math/8b401e71d30c7883fb91cebc893c7ab36634858c.png

_images/math/84997a7131bf529b52ed0060fe429b20646b9e41.png
At = 25

_images/math/9411a568a1c6ee8ed482fb8d9a6d982405666822.png
=1, Ea
r— feap (Er

_images/math/8c54025f58b4251db39eb01736a612ade208a376.png
F<

_images/math/9b0b4aeb4844dc494d50f64ba30a01c6953128b1.png

_images/math/9630132210b904754c9ab272b61cb527d12263ca.png

_images/math/555a9e5093dacd9066ddcef795d026bd8840a786.png

_images/math/f190d0642cdf3fc19ad53c1f3d4b9b8aeb89a9e4.png
cppsy = kV?T +¢q

_images/math/f126bc9342f422c9a0e67df2c6448520f6cebc12.png
135k

_images/math/f31b608a609157cbed9ed4aece11fa54d55035a5.png

_static/file.png

_static/plus.png

_static/minus.png

_images/dep_energy.png
ALY

RN N

Z Axis

_images/gauss_distr.png
x distribution

y distribution

008

006

004

002

0.00

&

S

) %

H a8

H 343

2 Fwo

] N 8 8] E H]
2

0.05 0.10

40 0.00

55

20

10

_images/diffusive_flow.png

_images/grid.png
Z Axis

_images/ghost_cells.png
1] - surface
—solid

—void
—ghostcell ‘i.
llll=»

_images/se_flux.png
sIxy Z

X Axis

_images/hausdorff_distance.png
8

o

2011 10 9

6

7
5

4

7/

8

(=)
o
L]
(=]
L]
-
-
o~
m.,.uu, |
o

(o2}
o
i
o
i
o
-
o
-

_images/SEs.png
X Axis

sixv Z

_images/PEs.png
Z Axis

